|
[1] Zhou, C., Hu, B., Shi, Y., Tian, Y. C., Li, X., & Zhao, Y. (2020). A unified architectural approach for cyberattack-resilient industrial control systems. Proceedings of the IEEE, 109(4), 517-541. [2] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press. [3] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [4] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [5] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. [6] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988). [7] Jiang, J. R., & Chen, Y. T. (2022). Industrial Control System Anomaly Detection and Classification Based on Network Traffic. IEEE Access. [8] Gómez, Á. L. P., Maimó, L. F., Celdran, A. H., Clemente, F. J. G., Sarmiento, C. C., Masa, C. J. D. C., & Nistal, R. M. (2019). On the generation of anomaly detection datasets in industrial control systems. IEEE Access, 7, 177460-177473. [9] Trend Labs 趨勢科技全球技術支援與研發中心:什麼是工業控制系統(Industrial Control System, ICS)。2022年6月5日,取自https://blog.trendmicro.com.tw/?p=67721。 [10] 台達:觸控型人機介面。2022年6月5日,取自https://www.deltaww.com/zh-tw/products/Touch-Panel-HMI-Human-Machine-Interfaces/ALL/ [11] 維基百科:遠端終端裝置。2022年6月5日,取自https://zh.wikipedia.org/zh-tw/%E8%BF%9C%E7%A8%8B%E7%BB%88%E7%AB%AF%E8%A3%85%E7%BD%AE [12] 維基百科:可程式化邏輯控制器。2022年6月5日,取自https://zh.wikipedia.org/wiki/%E5%8F%AF%E7%BC%96%E7%A8%8B%E9%80%BB%E8%BE%91%E6%8E%A7%E5%88%B6%E5%99%A8 [13] Wikipedia:DNP3。2022年6月5日,取自https://en.wikipedia.org/wiki/DNP3 [14] Wikipedia:Modbus。2022年6月5日,取自https://zh.wikipedia.org/zh-tw/Modbus [15] Wikipedia:OPC。2022年6月5日,取自https://zh.wikipedia.org/wiki/%E5%BC%80%E6%94%BE%E5%B9%B3%E5%8F%B0%E9%80%9A%E4%BF%A1 [16] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58. [17] Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126. [18] Wikipedia:Artificial neural network。2022年6月5日,取自https://en.wikipedia.org/wiki/Artificial_neural_network [19] Wikipedia:Neuron。2022年6月5日,取自https://en.wikipedia.org/wiki/Neuron [20] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. [22] Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference Proceedings. [23] Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415. [24] Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., & Garcia, R. (2000). Incorporating second-order functional knowledge for better option pricing. Advances in neural information processing systems, 13. [25] Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. arXiv preprint arXiv:1710.05941. [26] Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249-256). JMLR Workshop and Conference Proceedings. [27] LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In Neural networks: Tricks of the trade (pp. 9-48). Springer, Berlin, Heidelberg. [28] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034). [29] Wikipedia:Mean absolute error。2022年6月5日,取自https://en.wikipedia.org/wiki/Mean_absolute_error [30] Wikipedia:Mean squared error。2022年6月5日,取自https://en.wikipedia.org/wiki/Mean_squared_error [31] Wikipedia:Mean absolute percentage error。2022年6月5日,取自https://en.wikipedia.org/wiki/Mean_absolute_percentage_error [32] Wikipedia:Cross entropy。2022年6月5日,取自https://en.wikipedia.org/wiki/Cross_entropy [33] D. P. Kingma and J. Ba, ``Adam: A method for stochastic optimization,'' 2014, arXiv:1412.6980. [34] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2019). On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265. [35] Zhang, M. R., Lucas, J., Hinton, G., & Ba, J. (2019). Lookahead optimizer: k steps forward, 1 step back. arXiv preprint arXiv:1907.08610. [36] Less Wright:New Deep Learning Optimizer, Ranger: Synergistic combination of RAdam + LookAhead for the best of both.。2022年6月5日,取自https://lessw.medium.com/new-deep-learning-optimizer-ranger-synergistic-combination-of-radam-lookahead-for-the-best-of-2dc83f79a48d [37] Centre for Research in Cyber Security, iTrust (2021)。2022年6月5日,取自https://itrust.sutd.edu.sg/ [38] Mathur, A. P., & Tippenhauer, N. O. (2016, April). SWaT: a water treatment testbed for research and training on ICS security. In 2016 international workshop on cyber-physical systems for smart water networks (CySWater) (pp. 31-36). IEEE. [39] Ahmed, C. M., Palleti, V. R., & Mathur, A. P. (2017, April). WADI: a water distribution testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (pp. 25-28). [40] Adepu, S., Kandasamy, N. K., & Mathur, A. (2018). Epic: An electric power testbed for research and training in cyber physical systems security. In Computer Security (pp. 37-52). Springer, Cham. [41] Ning, B., Qiu, S., Zhao, T., & Li, Y. (2020, October). Power IoT attack samples generation and detection using generative adversarial networks. In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) (pp. 3721-3724). IEEE. [42] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661. |