帳號:guest(3.147.104.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:阮喬艷
作者(外文):NGUYEN THI KIEU DIEM
論文名稱:颱風 Bavi (2020) 在東中國海淺海異常增強
論文名稱(外文):Uncommon Intensification of Typhoon Bavi (2020) over the Shallow East China Sea
指導教授:潘任飛
指導教授(外文):IAM-FEI PUN
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:108626605
出版年:111
畢業學年度:110
語文別:英文
論文頁數:170
中文關鍵詞:颱風垂直混合海表溫度冷卻海氣熱通量颱風增強過程
外文關鍵詞:TyphoonVertical mixingSST coolingAir-sea heat fluxIntensification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
颱風Bavi(2020)的強度於8月25日18UTC時增強了100節(3級),並且在通過東海的淺海區時其強度維持6小時,對朝鮮半島和中國東北地區造成相當大的災害。本研究基於衛星、氣候再分析資料與IORS測站資料所觀測出的海洋溫度結構和海洋數值模擬實驗,來研究颱風Bavi在東海淺海地區的海洋-颱風之間的相互作用。由於颱風在東海淺海區增強時,引起了較大的海表溫度冷卻(約8℃)。根據數值實驗指出,這歸因於異常的海洋溫度結構:海表面溫度非常溫暖並且超過了30℃,以及水下存在著黃海底層冷水團,強烈的海洋層化效應可能限制了垂直混和。而且根據上層海洋1DPWP的模擬實驗指出,淺海並不是限制颱風所導致的海表溫度冷卻過程中的主要因素。另外,控制颱風加強的因素為海氣熱通量。IORS測站資料結果顯示,在颱風Bavi增強階段時的焓通量為+700 W/m2,海洋為颱風提供了相當巨大的能量。同樣地,大氣環境也為颱風Bavi的增強過程提供了有利條件。中低層的相對濕度(超過80%)近乎飽和,有利於颱風的強度增強,特別是當它強度達到Category-3時。然而,大氣的垂直風切強度並不利於颱風Bavi的增強,儘管垂直風切隨著颱風的增強而減弱(最小為11.7 m/s)。此外,對於颱風最大潛在強度的估計與Bavi颱風一致。 可以合理預期Bavi颱風可能會增強到Category-3。這項研究的結果能夠解釋為何颱風Bavi在淺海的影響下強度還能夠增強。
Typhoon Bavi (2020) intensified by 100 kt (Category-3) at 18Z 25 August and maintained in the shallow East China Sea region for 6 hours, causing considerable damage in the Korean Peninsula and Northeast China. Based on satellite, reanalysis data, and IORS in-situ station observed ocean thermal structure and numerical experimentsocean mixing models, in this study, we examined the ocean-typhoon interaction over around the shallow East China Sea region under Typhoon Bavi. Since this typhoon intensified over the shallow East China Sea region, typhoon-induced a large SST cooling effect (around 8℃oC), attributed to the abnormal ocean thermal structure, including over 30℃oC warming sea surface temperature and prevailing of the Yellow Sea Cold Bottom Water along with the strong stratification effects, which may prevent the vertical mixing process, based on numerical ocean mixing experimentsmodel. Moreover, the 1DPWP ocean mixing modelsimulation also emphasized that the shallow water was not the main factor in controlling typhoon-induced cooling. In addition, the typhoon’s typhoon’s response to the ocean regarding the air-sea heat flux-controlled typhoon intensification. The IORS observation results indicated that the air-sea heat flux enthalpy flux was generally +700 W/m2 during Typhoon Bavi’s Bavi’s intensification phase, which supplied the intense energy from the ocean to the typhoon. Likewise, the atmospheric environment also supported favorable conditions for the intensification process of Typhoon Bavi. Near-saturated relative humidity (over 80 %) at lower and mid-levels may contribute to the typhoon’s intensity evolution, notably as it reached a Category-3 state. However, the vertical wind shear was still high and did may not support Typhoon Bavi intensification, although it weakened (minimum was 11.74 m/s) as the typhoon intensified. Furthermore, the maximum potential intensity estimation was generally consistent with Typhoon Bavi in reality. It is reasonable to expect that this typhoon could intensify to Category-3. The results of this study could explain the intensification of Typhoon Bavi over this incredible region as well as the effect of shallow water in this case.
摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLES OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xv
LIST OF ABBREVIATIONS xvii
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 4
1.2.1 The importance of forecast typhoon intensity 4
1.2.2 The physical mechanism behind typhoon intensification 6
1.2.3 Numerical models 11
1.2.4 Maximum potential intensity (MPI) estimation 14
1.2.5 Characteristics of ECS 16
1.3 Scope of Present Study 18
CHAPTER 2. DATASETS 29
2.1 Typhoon Best Track Dataset 29
2.2 Satellite Dataset 31
2.3 Oceanic Reanalysis Datasets 33
2.3.1 HYbrid Coordinate Ocean Model (HYCOM) 33
2.3.2 Simple Ocean Data Assimilation, version 3 (SODA3) 34
2.3.3 Global Ocean Data Assimilation System (GODAS) 36
2.4 Monthly Climatology for Oceanic Parameters 38
2.5 Atmospheric Reanalysis Datasets 39
2.5.1 ECMWF Reanalysis version 5 (ERA5) 39
2.5.2 National Centres for Environmental Prediction Reanalysis and National Center for Atmospheric Research (NCEP/NCAR Reanalysis 1) 40
2.6 In-situ Observation 41
CHAPTER 3. METHODOLOGY 55
3.1 Upper Ocean Heat Content and Depth-average temperature (Td ) 55
3.2 Price 2009 model 58
3.3 One-dimensional Price-Weller-Pinkel (1DPWP) simulation 60
3.4 Air-sea enthalpy flux estimation 61
3.5 Vertical wind shear (VWS) estimation 63
3.6 Maximum Potential Intensity (MPI) estimation 64
CHAPTER 4. RESULTS 71
4.1 Ocean response to Typhoon Bavi 71
4.2.1 Satellite observation 71
4.2.2 Reanalysis 73
4.2.3 In-situ observation 77
4.2.4 1DPWP simulation 82
4.2 Response of Typhoon Bavi (2020) to the Ocean 87
4.3 Atmosphere environment 91
4.4 The MPI estimation 93
CHAPTER 5. DISCUSSION AND CONCLUSION 133
BIBLIOGRAPHIES 136
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLES OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiv
LIST OF ABBREVIATIONS xvi
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 4
1.2.1 The importance of forecast typhoon intensity 4
1.2.2 The physical mechanism behind typhoon intensification 6
1.2.3 Numerical models 11
1.2.4 Maximum potential intensity (MPI) estimation 14
1.2.5 Characteristics of ECS 16
1.3 Scope of Present Study 18
CHAPTER 2. DATASETS 29
2.1 Typhoon Best Track Dataset 29
2.2 Satellite Dataset 31
2.3 Oceanic Reanalysis Datasets 33
2.3.1 HYbrid Coordinate Ocean Model (HYCOM) 33
2.3.2 Simple Ocean Data Assimilation, version 3 (SODA3) 34
2.3.3 Global Ocean Data Assimilation System (GODAS) 36
2.4 Monthly Climatology for Oceanic Parameters 38
2.5 Atmospheric Reanalysis Datasets 39
2.5.1 ECMWF Reanalysis version 5 (ERA5) 39
2.5.2 National Centres for Environmental Prediction Reanalysis and National Center for Atmospheric Research (NCEP/NCAR Reanalysis 1) 40
2.6 In-situ Observation 41
CHAPTER 3. METHODOLOGY 55
3.1 Upper Ocean Heat Content and Depth-average temperature (Td ) 55
3.2 Price 2009 model 58
3.3 One-dimensional Price-Weller-Pinkel (1DPWP) simulation 60
3.4 Air-sea enthalpy flux estimation 61
3.5 Vertical wind shear (VWS) estimation 63
3.6 Maximum Potential Intensity (MPI) estimation 64
CHAPTER 4. RESULTS 71
4.1 Ocean response to Typhoon Bavi 71
4.2.1 Satellite observation 71
4.2.2 Reanalysis 73
4.2.3 In-situ observation 77
4.2.4 1DPWP simulation 82
4.2 Response of Typhoon Bavi (2020) to the Ocean 87
4.3 Atmosphere environment 91
4.4 The MPI estimation 93
CHAPTER 5. DISCUSSION AND CONCLUSION 133
BIBLIOGRAPHIES 136

Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 1013-1021.
Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917-946.
Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965-3989.
Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteo. Atmos.Phys., 65, 233-240.
——, 2002: Low frequency variability of tropical cyclone potential intensity - 1. Interannual to interdecadal variability. J. Geophys. Res. Atmos., 107.
Buck, A. L., 1981: New Equations for Computing Vapor Pressure and Enhancement Factor. J. Appl. Meteor. Climat., 20, 1527-1532.
Carton, J. A., G. A. Chepurin, and L. G. Chen, 2018: SODA3: A New Ocean Climate Reanalysis. J. Clim., 31, 6967-6983.
Chang, S., H. Lim, J. Jeong, J. Shim, I. Moon, Y. Oh, and H. You, 2014: Responses of Coastal Waters in the Yellow Sea to Typhoon Bolaven (2012). J. Coast. Res., 70, 278-283.
Chang, S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128-135.
Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 60-83.
Chen, J. H., S. J. Lin, L. Magnusson, M. Bender, X. Chen, L. Zhou, B. Xiang, S. Rees, M. Morin, and L. Harris, 2019: Advancements in hurricane prediction with NOAA's next‐generation forecast system. Geophys. Res. Lett., 46, 4495-4501.
Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Am. Meteorol. Soc., 88, 311-317.
Chen, S. Y. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190-3208.
Cho, Y.-K., M.-O. Kim, and B.-C. Kim, 2000: Sea fog around the Korean Peninsula. J. Appl. Meteorol., 39, 2473-2479.
Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The joint typhoon warning center tropical cyclone best-tracks, 1945–2000. Ref. NRL/MR/7540‐02, 16.
Chu, P., C. Yuchun, and A. Kuninaka, 2005: Seasonal variability of the Yellow Sea/East China Sea surface fluxes and thermohaline structure. Adv. Atmos. Sci., 22, 1-20.
Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783-1796.
D'Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of hurricane Frances. Geophys. Res. Lett., 34.
Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Holm, L. Isaksen, P. Kallberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J. J. Morcrette, B. K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J. N. Thepaut, and F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R., 137, 553-597.
Delworth, T. L., A. Rosati, W. Anderson, A. J. Adcroft, V. Balaji, R. Benson, K. Dixon, S. M. Griffies, H. C. Lee, R. C. Pacanowski, G. A. Vecchi, A. T. Wittenberg, F. R. Zeng, and R. Zhang, 2012: Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. J. Clim., 25, 2755-2781.
DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Weather and Forecasting, 9, 209-220.
——, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather and Forecasting, 14, 326-337.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Bull. Am. Meteorol. Soc., 86, 1217-1217.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Am. Meteorol. Soc., 95, 387-398.
Derber, J., and A. Rosati, 1989: A Global Oceanic Data Assimilation System. J. Phys. Oceanogr., 19, 1333-1347.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843-858.
Emanuel, K., S. Ravela, E. Vivant, and C. Risi, 2006: A Statistical Deterministic Approach to Hurricane Risk Assessment. Bull. Am. Meteorol. Soc., 87, 299-314.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585-605.
——, 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143-1155.
——, 1991: The theory of hurricanes. Annu. Rev., 23, 179-196.
Emanuel, K. A., 1995: Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model Incorporating Eye Dynamics. J. Atmos. Sci., 52, 3969-3976.
——, 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 1014-1026.
——, 1999: Thermodynamic control of hurricane intensity. Natur, 401, 665-669.
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.
Garcia, H., K. Weathers, C. Paver, I. Smolyar, T. Boyer, M. Locarnini, M. Zweng, A. Mishonov, O. Baranova, and D. Seidov, 2019: World Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate+ nitrite, silicate).
Gentemann, C. L., T. Meissner, and F. J. Wentz, 2009: Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote. Sens., 48, 1009-1018.
Glenn, S. M., T. N. Miles, G. N. Seroka, Y. Xu, R. K. Forney, F. Yu, H. Roarty, O. Schofield, and J. Kohut, 2016: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun., 7, 10887.
Goni, G., M. DeMaria, J. Knaff, C. Sampson, I. Ginis, F. Bringas, A. Mavume, C. Lauer, I.-I. Lin, and M. Ali, 2009: Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22, 190-197.
Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Transactions American Geophysical Union, 84, 573-578.
Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 6704-6716.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans, 155, 218.
Guan, S., W. Zhao, L. Sun, C. Zhou, Z. Liu, X. Hong, Y. Zhang, J. Tian, and Y. Hou, 2021: Tropical cyclone-induced sea surface cooling over the Yellow Sea and Bohai Sea in the 2019 Pacific typhoon season. J. Mar. Syst., 217.
Ha, K. J., S. Nam, I. Y. Jeong, I. J. Moon, M. Lee, J. Yun, C. J. Jang, Y. S. Kim, D. S. Byun, K. Y. Heo, and J. S. Shim, 2019: Observations Utilizing Korea Ocean Research Stations and their Applications for Process Studies. Bull. Am. Meteorol. Soc., 100, 2061-2075.
Henderson-Sellers, A., H. Zhang, G. Berz, K. Emanuel, W. Gray, C. Landsea, G. Holland, J. Lighthill, S.-L. Shieh, and P. Webster, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Am. Meteorol. Soc., 79, 19-38.
Heo, K.-Y., K.-J. Ha, and S.-S. Lee, 2012: Warming of Western North Pacific Ocean and Energetics of Transient Eddy Activity. Mon. Wea. Rev., 140, 2860-2873.
Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabater, J. Nicolas, C. Peubey, R. Radu, and D. Schepers, 2020: The ERA5 global reanalysis. Q. J. R., 146, 1999-2049.
Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519-2541.
Huang, P., Lin, II, C. Chou, and R. H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188.
Ji, M., A. Leetmaa, and J. Derber, 1995: An ocean analysis system for seasonal to interannual climate studies. Mon. Wea. Rev., 123, 460-481.
Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc., 77, 437-472.
Kaplan, J., and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather and Forecasting, 18, 1093-1108.
Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins. Weather and Forecasting, 25, 220-241.
Karnauskas, K. B., L. Zhang, and K. A. Emanuel, 2021: The Feedback of Cold Wakes on Tropical Cyclones. Geophys. Res. Lett., 48.
Kim, J., and Y. G. Lee, 2021: Characteristics of Satellite-Based Ocean Turbulent Heat Flux around the Korean Peninsula and Relationship with Changes in Typhoon Intensity. Remote Sens., 13.
Kim, Y. S., C. J. Jang, and S. W. Yeh, 2018: Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift. Cont. Shelf Res., 156, 43-54.
Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Weather and Forecasting, 20, 688-699.
Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503-2510.
Knutson, T. R., R. E. Tuleya, W. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Clim., 14, 2458-2468.
Lander, M. A., 2008: 4B. 2 A COMPARISON OF TYPHOON BEST-TRACK DATA IN THE WESTERN NORTH PACIFIC: IRRECONCILABLE DIFFERENCES.
Lee, C. Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016a: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun., 7, 10625.
Lee, J.-h., I.-C. Pang, and J.-H. Moon, 2016b: Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011. J. Geophys. Res. Oceans, 121, 3777-3789.
Lee, S. H., and R. C. Beardsley, 1999: Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res. Oceans, 104, 15679-15701.
Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico.
Li, J., G. Li, J. Xu, L. Qiao, Y. Ma, D. Ding, and S. Liu, 2019: Responses of Yellow Sea cold water mass to typhoon Bolaven. J. Ocean Univ. China, 18, 31-42.
Lie, H. J., and C. H. Cho, 2016: Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Prog. Oceanogr., 146, 121-141.
Lie, H. J., C. H. Cho, J. H. Lee, and S. Lee, 2003: Structure and eastward extension of the Changjiang River plume in the East China Sea. J. Geophys. Res. Oceans, 108.
Lin, C.-Y., H.-M. Hsu, Y.-F. Sheng, C.-H. Kuo, and Y.-A. Liou, 2011: Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over Southern Taiwan. Atmos. Chem. Phys., 11, 345-361.
Lin, I. I., P. Black, J. F. Price, C. Y. Yang, S. S. Chen, C. C. Lien, P. Harr, N. H. Chi, C. C. Wu, and E. A. D'Asaro, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878-1882.
Lin, I. I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009a: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, n/a-n/a.
Lin, I. I., I. F. Pun, and C. C. Lien, 2014: “Category‐6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 8547-8553.
Lin, I. I., I. F. Pun, and C. C. Wu, 2009b: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Mon. Wea. Rev., 137, 3744-3757.
Lin, I. I., R. F. Rogers, H.-C. Huang, Y.-C. Liao, D. Herndon, J.-Y. Yu, Y.-T. Chang, J. A. Zhang, C. M. Patricola, I.-F. Pun, and C.-C. Lien, 2021: A Tale of Two Rapidly-Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013). Bull. Am. Meteorol. Soc., 10.1175/bams-d-20-0223.1, 1-59.
Lin, I. I., C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635-2649.
Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on hurricane intensity. J. Clim., 24, 1138-1153.
Lü, X., F. Qiao, C. Xia, G. Wang, and Y. Yuan, 2010: Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Cont. Shelf Res., 30, 620-632.
Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tell, 12, 1-20.
Mei, W., C.-C. Lien, I. I. Lin, and S.-P. Xie, 2015: Tropical Cyclone–Induced Ocean Response: A Comparative Study of the South China Sea and Tropical Northwest Pacific*,+. J. Clim., 28, 5952-5968.
Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678-1687.
Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Atmos. Sci., 15, 184-195.
Moon, I.-J., and S. J. Kwon, 2012: Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons. Prog. Oceanogr., 105, 61-66.
Moon, J. H., N. Hirose, and J. H. Yoon, 2009: Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. J. Geophys. Res. Oceans, 114.
Oh, H. M., K. J. Ha, K. Y. Heo, K. E. Kim, S. J. Park, J. S. Shim, and L. Mahrt, 2010: On drag coefficient parameterization with post processed direct fluxes measurements over the ocean. Asia. Pac. J. Atmos. Sci., 46, 513-523.
Oh, K.-H., J.-H. Lee, S. Lee, and I.-C. Pang, 2015: Intrusion of low-salinity water into the Yellow Sea Interior in 2012. Ocean Science Journal, 49, 343-356.
Pang, I.-C., C.-S. Hong, K.-I. Chang, J.-C. Lee, and J.-T. Klm, 2003: Monthly variation of water mass distribution and current in the Cheju Strait. J. Korean Soc. Oceanogr., 38, 87-100.
Park, J. H., D. E. Yeo, K. Lee, H. Lee, S. W. Lee, S. Noh, S. Kim, J. Shin, Y. Choi, and S. Nam, 2019: Rapid Decay of Slowly Moving Typhoon Soulik (2018) due to Interactions With the Strongly Stratified Northern East China Sea. Geophys. Res. Lett., 46, 14595-14603.
Park, M.-S., R. L. Elsberry, and P. A. Harr, 2012: Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. cyclone res. rev., 1, 448-457.
Park, T., C. J. Jang, J. H. Jungclaus, H. Haak, W. Park, and I. S. Oh, 2011: Effects of the Changjiang river discharge on sea surface warming in the Yellow and East China Seas in summer. Cont. Shelf Res., 31, 15-22.
Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 3644-3660.
Potter, H., S. F. DiMarco, and A. H. Knap, 2019: Tropical Cyclone Heat Potential and the Rapid Intensification of Hurricane Harvey in the Texas Bight. J. Geophys. Res. Oceans, 124, 2440-2451.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Natur, 422, 279-283.
Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175.
Price, J. F., 2009: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351-368.
Price, J. F., C. N. Mooers, and J. C. Van Leer, 1978: Observation and simulation of storm-induced mixed-layer deepening. J. Phys. Oceanogr., 8, 582-599.
Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr., 24, 233-260.
Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research, 91.
Pun, I.-F., J. Chan, I. I. Lin, K. Chan, J. Price, D. Ko, C.-C. Lien, Y.-L. Wu, and H.-C. Huang, 2019: Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11.
Pun, I.-F., I.-I. Lin, C.-C. Lien, and C.-C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661-677.
Pun, I.-F., I. Lin, C.-R. Wu, D.-S. Ko, and W. T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Trans. Geosci. Remote. Sens., 45, 1616-1630.
Pun, I.-F., J. F. Price, and S. R. Jayne, 2016: Satellite-Derived Ocean Thermal Structure for the North Atlantic Hurricane Season. Mon. Wea. Rev., 144, 877-896.
Pun, I.-F., C.-C. Wu, I. I. Lin, and D.-S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Wea. Rev., 136, 3288-3306.
Rappaport, E. N., J. G. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: THE JOINT HURRICANE TEST BED Its First Decade of Tropical Cyclone Research-To-Operations Activities Reviewed. Bull. Am. Meteorol. Soc., 93, 371-+.
Reynolds, R. W., and T. M. Smith, 1994: Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim., 7, 929-948.
Rogers, R. F., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, T. B. Kimberlain, J. Morgerman, L. K. Shay, and C. Velden, 2017: Rewriting the Tropical Record Books: The Extraordinary Intensification of Hurricane Patricia (2015). Bull. Am. Meteorol. Soc., 98, 2091-2112.
Saha, S., S. Nadiga, C. Thiaw, J. Wang, W. Wang, Q. Zhang, H. Van den Dool, H.-L. Pan, S. Moorthi, and D. Behringer, 2006: The NCEP climate forecast system. J. Clim., 19, 3483-3517.
Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642-651.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
Sutyrin, G., and A. Khain, 1979: INTERACTION BETWEEN THE OCEAN AND THE ATMOSPHERE IN THE REGION OF A MIGRATORY TROPICAL CYCLONE. Dokl. Akad. Nauk SSSR, 249, 467-470.
Thatcher, L., P. Zhaoxia, and A. Lupo, 2011: How vertical wind shear affects tropical cyclone intensity change: An overview. Recent Hurricane Research—Climate, Dynamics, and Societal Impacts, 269, 286.
Tonkin, H., G. J. Holland, N. Holbrook, and A. Henderson-Sellers, 2000: An evaluation of thermodynamic estimates of climatological maximum potential tropical cyclone intensity. Mon. Wea. Rev., 128, 746-762.
Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 2487-2506.
Wang, Y.-q., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes–a review. Meteo. Atmos.Phys., 87, 257-278.
Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850.
Wong, M. L., and J. C. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859-1876.
Wu, C.-C., C.-Y. Lee, and I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562-3578.
Wu, L., H. Su, R. G. Fovell, B. Wang, J. T. Shen, B. H. Kahn, S. M. Hristova‐Veleva, B. H. Lambrigtsen, E. J. Fetzer, and J. H. Jiang, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39.
Xia, C., F. Qiao, Y. Yang, J. Ma, and Y. Yuan, 2006: Three‐dimensional structure of the summertime circulation in the Yellow Sea from a wave‐tide‐circulation coupled model. J. Geophys. Res. Oceans, 111.
Yang, Y., K. Li, J. Du, Y. Liu, L. Liu, H. Wang, and W. Yu, 2019: Revealing the Subsurface Yellow Sea Cold Water Mass from Satellite Data Associated with Typhoon Muifa. J. Geophys. Res. Oceans, 124, 7135-7152.
Yun, J., K. J. Ha, and Y. H. Jo, 2018: Interdecadal changes in winter surface air temperature over East Asia and their possible causes. Clim. Dyn., 51, 1375-1390.
Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35.
Zhao, X., and J. C. Chan, 2017: Changes in tropical cyclone intensity with translation speed and mixed‐layer depth: idealized WRF‐ROMS coupled model simulations. Q. J. R., 143, 152-163.

論文全文檔清單如下︰
1.電子全文連結(11602.499K)
(電子全文不開放)
紙本授權註記:2027/2/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *