帳號:guest(3.145.65.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:阮煌隆
作者(外文):Nguyen Dinh Hoang Long
論文名稱:二月份最強颱風:Wutip (2019) 之 大氣與海洋條件
論文名稱(外文):Atmospheric and Oceanic Conditions for the Strongest Typhoon in February: Wutip
指導教授:潘任飛
指導教授(外文):Iam-Fei Pun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:108626604
出版年:111
畢業學年度:110
語文別:英文
論文頁數:119
中文關鍵詞:超級颱風海水面高度颱風大小海洋溫度結構海水面冷卻
外文關鍵詞:Super TyphoonsSea Surface HeightTyphoon SizeOcean Thermal StructureSea Surface Cooling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
颱風蝴蝶(Wutip)於2019年2月在西北太平洋上生成並在7日內快速增強為強烈颱風。然而,與當前颱風研究互相牴觸的是颱風蝴蝶所通過的海洋,其海平面高度比平常低(平均負8.5公分)。顯示當時的海洋環境並不適合其成長。因此,本研究旨在透過一系列的觀測與再分析資料(如 JTWC 最佳颱風路徑、HYCOM、SODA 和ERA5),去瞭解許多不同因素(如大尺度海洋、大氣環境與颱風特徵等)對 Wutip強度的影響。於第一項討論中,透過比較Wutip 與14年內 (2005-2018) 年際及冬季的長期氣候值颱風大小,此研究發現颱風大小對於Wutip的增強並非主因:經由Price 2009模式的敏感性實驗測試發現,Wutip颱風大小約比氣候值要大10%-20%,因此Wutip所引起的海表面溫度冷卻要比氣候值強約15%-30%。接著在第二項討論中,將這14年內所有1 月份的颱風進行比較後發現,較冷的上層垂直海溫結構時常伴隨著較強的海表面溫度冷卻效應,大於2.5℃。因此,較冷的海溫結構可能是限制1月份的歷史紀錄中颱風無法成為強烈颱風的原因。而第三項討論中,在2月份的颱風增強過程中,西北太平洋的東南象限往往是提供能量最顯著的區域。值得注意的是,若Wutip生成或增強於其他象限(西南、西北、東北)則其將無法成為如此強且能破紀錄的颱風。由大氣環境分析發現,較弱的垂直風切 (7-8 m/s) 在1,2月份往往是強烈颱風發展的有利與控制因子;與之相對的是,較乾的中層空氣減慢了強烈颱風與非強烈颱風的增強過程。最後,本研究著重在西北太平洋上的溫暖的海洋結構氣候背景場,以及Wutip颱風生成與快速增強的地點,扮演了至關重要的角色,並探討大氣條件等因素,亦會參與Wutip的快速增強過程。
In February 2019, Wutip was formed and rapidly intensified into a super typhoon in the Western North Pacific, causing the loss of property for the Federated States of Micronesia. The evolution of Wutip case made a huge question for the typhoon forecaster since there were strong negative sea surface height features (roughly -8.5 cm) on their trajectory. Using a series of data such as JTWC’s best-track data, HYCOM, SODA, and ERA5, this study aims to investigate the impact of multiple factors (e.g., the large-scale oceanic environment, the large-scale atmospheric environment, and typhoon characteristics) on Wutip’s intensity. In the first scenario, the Wutip’s size compared to the climatological intensifying typhoons within 14 years (2005 – 2018) in both the annual average and the winter seasons. The result indicated that the typhoon size was not a booster factor for Wutip intensification. The sensitivity experiment from the Price 2009 model showed that a size enlargement of Wutip about 10% – 20% compared to climatology triggered an increase in the TC-induced cooling effect in a range of 15% to 30%. The second scenario was compared with typical tropical storms in January. The result showed that the cooler pre-upper-thermal structure profiles induced a great self-cooling effect over 2.5oC. Thus, this was the reason why historical typhoons of January could not intensify into super typhoons with cooler ocean profiles. Thirdly, the evolution in the southeast quadrant region had a significant contributor to the intensification process of super typhoons in February, especially for Wutip. It is noteworthy that Wutip was unable to break the historical records unless it was formed or intensified in the southeast quadrant region. The moderate vertical wind shear around 7-8 m/s was a favorable and controlling factor for historical super typhoons (STYs) compared to non-super typhoons (non-STYs) in January and February. Contrastingly, the dry air of relative humidity at mid-level just slowed down the intensification process for both STYs and non-STYs. In conclusion, this study emphasizes the crucial role of the thickness of warm climatological background in the Western North Pacific, the geographical location where Wutip formed and rapidly intensified, and the supporting factor from atmospheric conditions during the Wutip intensification process.
摘要 i
Abstract ii
Acknowledgments ii
Table of Contents iv
List of Figures vi
List of Tables xiii
Abbreviation xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.2 Typhoon Characteristics on Typhoon Intensification 4
1.2.3 Atmospheric Parameters on Typhoon Intensification 5
1.3 Scientific Issues and Structure of this Dissertation 6
Chapter 2 Data and Methodology 9
2.1 Best-Track Data 9
2.2 Satellite Data 10
2.2.1 Sea Surface Height Anomaly (SSHA) 10
2.2.2 Optimal Interpolation Sea Surface Temperature (OISST) 12
2.3 Reanalysis Data for Upper Ocean Thermal Structure 13
2.3.1 HYCOM Dataset 13
2.3.2 SODA Dataset 14
2.4 Reanalysis Data for Atmospheric Parameters 15
2.4.1 Vertical Wind Shear (VWS) 15
2.4.2 Relative Humidity (RH) 16
2.5 Numerical Model and Sensitivity Experiments 18
2.5.1 Price 2009 Model 18
2.5.2 Sensitivity Experiments 19
2.6 Air-Sea Enthalpy Flux 21
Chapter 3 Results 35
3.1 Pre-existing Oceanic Conditions for Wutip 35
3.2 Spatial and Temporal Distribution of Super Typhoon 38
3.3 Comparing Typhoon Size Between Wutip and Climatology 40
3.4 Comparison between Wutip and Typhoons in January and February 42
3.5 Geographical Location 45
3.6 Atmospheric Environmental Conditions 47
References 95

Andrew, B., and V. Christopher, 2011: Precedding of the International Workshop on Satellite Analysis of Tropical Cyclones. Precedding of the International Workshop on Satellite Analysis of Tropical Cyclones, Hawaii, USA, World Meteorological Organization
Balaguru, K., G. R. Foltz, L. R. Leung, and K. A. Emanuel, 2016: Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat Commun, 7, 13670 DOI: 10.1038/ncomms13670.
Buck, A. L., 1981: New Equations for Computing Vapor Pressure and Enhancement Factor. J Appl. Meteorol. Climatol., 20, 1527-1532 DOI: 10.1175/1520-0450(1981)020<1527:Nefcvp>2.0.Co;2.
Carrasco, C. A., C. W. Landsea, and Y. L. Lin, 2014: The Influence of Tropical Cyclone Size on Its Intensification. Wea. Forecasting, 29, 582-590 DOI: 10.1175/Waf-D-13-00092.1.
Carton, J. A., and B. S. Giese, 2008: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999-3017 DOI: 10.1175/2007MWR1978.1.
Chang, Y. T., I. I. Lin, H. C. Huang, Y.-C. Liao, and C.-C. Lien, 2020: The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea. Sustainability, 12 DOI: 10.3390/su12030939.
Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraftet al.R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. , 65, 60-83 DOI: 10.1016/j.jmarsys.2005.09.016.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945-2000.
Cione, J. J., 2015: The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes. Mon. Wea. Rev., 143, 904-913 DOI: 10.1175/MWR-D-13-00380.1.
D'Asaro, E. A., P. G. Black, L. R. Centurioni, Y. T. Chang, S. S. Chen, R. C. Fosteret al.C. C. Wu, 2014: Impact of Typhoons on the Ocean in the Pacific. Bull. Am. Meteorol. Soc., 95, 1405-1418 DOI: 10.1175/BAMS-D-12-00104.1.
Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashiet al.F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137, 553-597 DOI: 10.1002/qj.828.
DeMaria, M., 1996: The Effect of Vertical Shear on Tropical Cyclone Intensity Change. J. Atmos. Sci., 53, 2076-2088 DOI: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531-543 DOI: 10.1175/WAF862.1.
Department of Environment, C. C. a. E. M., and P. FSM National, Chuuk and Yap State authorities, 2019: Situation report: Typhoon Wutip.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci., 61, 843-858 DOI: 10.1175/1520-0469(2004)061<0843:Ecotci>2.0.Co;2.
Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669 DOI: Doi 10.1038/44326.
Frank, W. M., and E. A. Ritchie, 2001: Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Mon. Wea. Rev., 129, 2249-2269 DOI: 10.1175/1520-0493(2001)129<2249:Eovwso>2.0.Co;2.
Fu, L. L., E. J. Christensen, C. A. Yamarone, M. Lefebvre, Y. Ménard, M. Dorrer, and P. Escudier, 1994: TOPEX/POSEIDON mission overview. J. Geophys. Res., 99, 24369 DOI: 10.1029/94JC01761.
Gray, W. M., 1968: Global View of the Origin of Tropical Disturbances and Storms, 32.
Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabateret al.J. N. Thépaut, 2020: The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., 146, 1999-2049 DOI: 10.1002/qj.3803.
Holliday, C. R., and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022-1034 DOI: 10.1175/1520-0493(1979)107<1022:Ccorit>2.0.Co;2.
Huang, H. C., J. Boucharel, I. I. Lin, F. F. Jin, C. C. Lien, and I. F. Pun, 2017: Air-sea fluxes for Hurricane Patricia (2015): Comparison with supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res.: Oceans, 122, 6076-6089 DOI: 10.1002/2017JC012741.
Huang, P., I. I. Lin, C. Chou, and R. H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat Commun, 6, 7188 DOI: 10.1038/ncomms8188.
Kaplan, J., and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Wea. Forecasting, 18, 1093-1108 DOI: 10.1175/1520-0434(2003)018<1093:Lcorit>2.0.Co;2.
Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An Operational Statistical Typhoon Intensity Prediction Scheme for the Western North Pacific. Wea. Forecasting, 20, 688-699 DOI: 10.1175/WAF863.1.
Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper Oceanic Energy Response to Tropical Cyclone Passage. Journal of Climate, 26, 2631-2650 DOI: 10.1175/JCLI-D-12-00038.1.
Ko, D. S., S. Y. Chao, C.-C. Wu, and I. I. Lin, 2014: Impacts of typhoon megi (2010) on the South China Sea. J. Geophys. Res.: Oceans, 119, 4474-4489 DOI: 10.1002/2013JC009785.
Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218-224.
Lin, I. I., 2012: Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean: TYPHOON-INDUCED BLOOMS AND PRODUCTIVITY. J. Geophys. Res.: Oceans, 117, n/a-n/a DOI: 10.1029/2011JC007626.
Lin, I. I., I. F. Pun, and C. C. Wu, 2009a: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Mon. Wea. Rev., 137, 3744-3757 DOI: 10.1175/2009mwr2713.1.
Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Wea. Rev., 136, 3288-3306 DOI: 10.1175/2008MWR2277.1.
Lin, I. I., C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009b: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008): WARM OCEAN ANOMALY AND CYCLONE NARGIS. Geophys. Res. Lett., 36, n/a-n/a DOI: 10.1029/2008GL035815.
Lin, I. I., P. Black, J. F. Price, C. Y. Yang, S. S. Chen, C. C. Lienet al.E. A. D'Asaro, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878-1882 DOI: 10.1002/grl.50091.
Lin, I. I., R. F. Rogers, H. C. Huang, Y. C. Liao, D. Herndon, J. Y. Yuet al.C.-C. Lien, 2021: A Tale of Two Rapidly-Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013). Bull. Am. Meteor. Soc., 1-59 DOI: 10.1175/BAMS-D-20-0223.1.
Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes. Wea. Forecasting, 23, 3-16 DOI: 10.1175/2007WAF2006111.1.
Mertz, F., 2013: Global ocean gridded L4 sea surface heights and derived variables reprocessed (1993-ongoing).
Mohapatra, M., and M. Sharma, 2015: Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean. J. Earth. Syst. Sci., 124, 1573-1598 DOI: 10.1007/s12040-015-0613-6.
Pandey, R. S., Y. A. Liou, and J. C. Liu, 2021: Season-dependent variability and influential environmental factors of super-typhoons in the Northwest Pacific basin during 2013–2017. Weather. Clim. Extremes, 31 DOI: 10.1016/j.wace.2021.100307.
Park, M. S., L. E. Russel, and A. H. Patrick, 2012: Vertical Wind Shear and Ocean Heat Content as Environmental Modulators of Western North Pacific Tropical Cyclone Intensification and Decay. Trop. cyclone res. rev., 1, 448-457.
Peng, M. S., E. A. Hendricks, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243-3271 DOI: 10.1175/2010mwr3185.1.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283 DOI: 10.1038/nature01481.
Price, J. F., 1981: Upper Ocean Response to a Hurricane. J. Phys. Oceanogr., 11, 153-175 DOI: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.
Price, J. F., 2009: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351-368 DOI: 10.5194/os-5-351-2009.
Price, J. F., B. T. Sanford, and Z. G. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233-260.
Pun, I. F., J. A. Knaff, and C. R. Sampson, 2021: Uncertainty of Tropical Cyclone Wind Radii on Sea Surface Temperature Cooling. J. Geophys. Res.: Atmosphere, 126 DOI: 10.1029/2021JD034857.
Pun, I. F., I. I. Lin, C.-C. Lien, and C.-C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661-677 DOI: 10.1175/MWR-D-17-0044.1.
Pun, I. F., I. I. Lin, C.-R. Wu, D. S. Ko, and W. T. Liu, 2007: Validation and Application of Altimetry-Derived Upper Ocean Thermal Structure in the Western North Pacific Ocean for Typhoon-Intensity Forecast. IEEE Trans. Geosci. Remote Sensing, 45, 1616-1630 DOI: 10.1109/TGRS.2007.895950.
Pun, I. F., Y. T. Chang, I. I. Lin, T. Y. Tang, and R. C. Lien, 2011: Typhoon-Ocean Interaction in the Western North Pacific: Part 2. Oceanog., 24, 32-41 DOI: 10.5670/oceanog.2011.92.
Pun, I. F., J. C. L. Chan, I. I. Lin, K. T. F. Chan, J. F. Price, D. S. Ko, C. C. Lien, L. Wu, and H. C. Huang, 2019: Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11, 3709.
Pun, I. F., J. F. Price, and S. R. Jayne, 2016: Satellite-Derived Ocean Thermal Structure for the North Atlantic Hurricane Season. Mon. Wea. Rev., 144, 877-896 DOI: 10.1175/Mwr-D-15-0275.1.
Rogers, R. F., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, T. B. Kimberlainet al.C. Velden, 2017: Rewriting the Tropical Record Books: The Extraordinary Intensification of Hurricane Patricia (2015). Bull. Am. Meteor. Soc., 98, 2091-2112 DOI: 10.1175/BAMS-D-16-0039.1.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Wea. Rev., 128, 18.
Shay, L. K., B. Jaimes, and E. W. Uhlhorn, 2015: Enthalpy and Momentum Fluxes during Hurricane Earl Relative to Underlying Ocean Features. Mon. Wea. Rev., 143, 111-131 DOI: 10.1175/mwr-d-13-00277.1.
Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20227 DOI: 10.1029/92JC01586.
Shen, L. Z., C. C. Wu, and F. Judt, 2021: The Role of Surface Heat Fluxes on the Size of Typhoon Megi (2016). J. Atmos. Sci., 78, 1075-1093 DOI: 10.1175/JAS-D-20-0141.1.
Sitkowski, M., J. Kossin, and C. Rozoff, 2011: Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Wea. Rev., 139, 3829-3847 DOI: 10.1175/MWR-D-11-00034.1.
Taburet, G., and P. Marie-Isabelle, 2021: Quality information document. Copernicus.
Tory, K. J., and R. A. Dare, 2015: Sea Surface Temperature Thresholds for Tropical Cyclone Formation. Journal of Climate, 28, 8171-8183 DOI: 10.1175/JCLI-D-14-00637.1.
Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change: Increase of super-typhoon intensity. Geophys. Res. Lett., 42, 646-652 DOI: 10.1002/2014GL061793.
Walker, N. D., R. R. Leben, C. T. Pilley, M. Shannon, D. C. Herndon, I. F. Pun, C. L. Gentemann, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy: Northeast Pacific Hurricane Collapses. Geophys. Res. Lett., 41, 7595-7601 DOI: 10.1002/2014GL061584.
Wang, B., and J. C. L. Chan, 2002: How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. Journal of Climate, 15, 1643-1658 DOI: 10.1175/1520-0442(2002)015<1643:Hseeat>2.0.Co;2.
Wang, B., and X. Zhou, 2007: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys., 99, 1-16 DOI: 10.1007/s00703-006-0238-z.
Wang, S., and R. Toumi, 2019: Impact of Dry Midlevel Air on the Tropical Cyclone Outer Circulation. J. Atmos. Sci, 76, 1809-1826 DOI: 10.1175/jas-d-18-0302.1.
Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes ? a review. Meteorol. Atmos. Phys., 87, 257-278 DOI: 10.1007/s00703-003-0055-6.
Wong, M. L. M., and J. C. L. Chan, 2004: Tropical Cyclone Intensity in Vertical Wind Shear. J Atmos Sci, 61, 1859-1876 DOI: 10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.
Wu, C. C., W. T. Tu, I. F. Pun, I. I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)-A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations: Coupled Model Simulation for Megi (2010). J. Geophys. Res.: Atmospheres, 121, 153-167 DOI: 10.1002/2015JD024198.
Wu, L., H. Su, R. G. Fovell, B. Wang, J. T. Shen, B. H. Kahn, S. M. Hristova-Veleva, B. H. Lambridgtsen, E. J. Fetzer, and J. H. Jiang, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39 DOI: 10.1029/2012gl053546.
論文全文檔清單如下︰
1.電子全文連結(9983.456K)
(電子全文不開放)
紙本授權註記:2027/2/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *