帳號:guest(3.144.127.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:洪祥峰
作者(外文):Xiang-Feng Hong
論文名稱:應用綠屋頂水文模式分析不同雨量與臨前含水量下之減洪效用
論文名稱(外文):Applying a green-roof hydrological model to analyze the stormwater reduction under different rainfall and antecedent water content
指導教授:陳沛芫
指導教授(外文):Pei-Yuan Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:108626007
出版年:110
畢業學年度:109
語文別:中文
論文頁數:108
中文關鍵詞:綠屋頂實驗水文模式減洪效用臨前含水量滯留體積比尖峰削減比延遲時間
外文關鍵詞:Green roof experimentHydrological modelStormwater reductionAntecedent water contentRetained volumePeak reductionDelay time
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
都市不透水面積增加與極端降雨頻繁易造成地表逕流排水不及之淹水災害,而綠屋頂具降雨滯留潛力,為近年洪水管理的有效方案之一;本研究於中央大學建立包含實驗組(綠屋頂)與對照組(沒有綠屋頂)之觀測系統,分析綠屋頂減洪效用,採用指標包含滯留體積、尖峰削減比和尖峰延遲時間,同時利用半年觀測資料結合綠屋頂水文模式(NTU-GR)做排出量之檢定與驗證,並應用NTU-GR於歷史三年降雨資料以進行更全面之分析。本研究將降雨事件以總降雨量20公厘為界限分成大型降雨和小型降雨,NTU-GR驗證之效率係數分別為0.89和0.84,表示NTU-GR在不同的降雨大小都能合理預測綠屋頂的水文表現。觀測資料的減洪效用分析結果顯示滯留體積和尖峰削減比的平均都有50%以上的表現,尖峰延遲時間約0到1小時。模式應用則以不同臨前含水量(40%、30%、20%、10%)為條件輸入過去所有降雨事件模擬,結果顯示若綠屋頂的臨前含水量在30%以下,有75%機率的事件滯留體積與尖峰削減比都能有約50%以上的表現。再以大小型降雨做分類,綠屋頂的臨前含水量若在30%以下,小型降雨事件下綠屋頂的滯留體積和尖峰削減比都有99.6%以上的表現;大型降雨事件且綠屋頂臨前含水量在20%以下的話,有50%的機率事件之滯留體積有50%以上且尖峰削減比有60%以上的表現,而尖峰延遲時間也隨臨前含水量越低平均時間越長。說明臨前含水量和降雨大小都是影響整個綠屋頂減洪效用的關鍵,綠屋頂在臨前含水量低時對於治理洪水有一定程度的貢獻。另外,本研究也發展出一個簡單的公式可以快速且合理推估出特定綠屋頂臨前含水量下每一場降雨事件之滯留體積比。
Due to the increase of urban impervious area and frequent extreme rainfall, the drainage system may not be able to drain stormwater and thus cause flooding. Green roof has the rainfall retention potential. It is one of the effective solutions for flood management in recent years . We build a green roof observation system which including experimental group (green roof) and control group (no green roof) in National Central University to analyze the stormwater reduction of the green roof . The stormwater reduction indicators include retained volume, peak reduction and peak-delay time. Then observation data for half year was input into a green roof hydrological model (NTU-GR) for calibration and validation. After confirming the feasibility of the model, NTU-GR model was applied to simulate the historical three-year rainfall data for a more comprehensive analysis. In this study, the rainfall events are divided into large rainfall and small rainfall with a total rainfall of 20 mm as the threshold. The Nash coefficient of two kinds of events are 0.89 and 0.84, respectively, indicating NTU-GR model performs well in simulating the green roof hydrology under both large rainfall and small rainfall events. The results of stormwater reduction of the observation data shows that both the retained volume and peak reduction have an average performance of more than 50%, and the peak delay time is about 0 to 1 hour. Moreover, the model is applied to simulates all of the rainfall events in the past 3 years with different antecedent water content (AWC=40%, 30%, 20%, 10%). The results of stormwater reduction show that if the AWC of the green roof is below 30%, the retained volume and peak reduction ratio are more than 50% for 75% of the events. When the events of rainfall is less than 20 mm and the AWC of the green roof is below 30%, the retained volume and the peak reduction of the green roof will be more than 99.6%. When the events of rainfall is larger than 20 mm and the AWC of the green roof is below 20%, 50% of the events have a performance of more than 50% in retained volume and more than 60% in peak reduction. When the AWC is lower, the average of delay time is longer. It shows that the AWC and rainfall are the key factors affecting the stormwater reduction of the entire green roof. Green roofs have a certain degree of contribution to stormwater reduction when the AWC is low. Furthermore, this research also develops a simple formula that can quickly and reasonably estimate the retained volume of each rainfall events under a specific green roof's AWC.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章、緒論 1
1.1 研究動機與目的 1
1.2 研究內容與架構 2
第二章、文獻回顧 3
2.1 綠屋頂國內外的發展與政策 3
2.2 綠屋頂水文模式 4
2.3 綠屋頂滯留特性 5
第三章、綠屋頂觀測實驗設計與數據處理 8
3.1 建立模組化綠屋頂觀測單元 8
3.2 綠屋頂各層設計 9
3.3 觀測系統之建立 12
3.3.1 氣象觀測儀器 12
3.3.2 水文參數觀測儀器 15
3.3.3 觀測資料紀錄說明 20
3.4 綠屋頂實驗觀測數據 21
第四章、綠屋頂水文模式 24
4.1 綠屋頂水文模式運算方法與流程 24
4.1.1 地表層 27
4.1.2 土壤層 28
4.1.3 排水層 30
4.2 模式資料與參數說明 31
4.3 模式檢定與驗證 34
4.4 綠屋頂的減洪效用指標 35
4.5 模式應用分析綠屋頂的減洪效用 36
第五章、結果與討論 39
5.1 蒸發散驗證 39
5.2 模式檢定與驗證結果 40
5.2.1 模式修正 40
5.2.2 模式的參數檢定結果 41
5.2.3 模式的驗證結果 42
5.3 實驗觀測資料之減洪效用分析 48
5.3.1 滯留體積分析 48
5.3.2尖峰削減比與尖峰延遲時間分析 50
5.4 模式應用結果之不同臨前含水量下的減洪效用分析 53
5.4.1 不同臨前含水量下的滯留體積分析 53
5.4.2 不同臨前含水量下的尖峰削減比分析 57
5.4.3 滯留體積與尖峰削減比之相關性 60
5.5 模式應用結果之不同臨前含水量和降雨事件大小的減洪效用分析 62
第六章、結論與建議 69
6.1 結論 69
6.2 建議 70
參考文獻 72
附錄 76



[1] 中華民國內政部營建署。建築基地綠化設計技術規範,2019
[2] 中華民國經濟部水利署。水利法第七章之一逕流分擔與出流管制,2018
[3] 中華民國經濟部水利署。逕流分擔技術手冊,2020
[4] 邱靜怡,2012,「綠屋頂能量與水文模式發展及本土化參數之研究」,國立台灣 大學生物環境系統工程學研究所碩士論文
[5] 羅唯瑄, 2013,「發展綠屋頂水文模式與應用於減洪效用分析」,國立台灣大學生物環境系統工程學研究所碩士論文
[6] Al-Zu’bi, M., & Mansour, O. (2017). Water, energy, and rooftops: integrating green roof systems into building policies in the Arab region. Environment and Natural Resources Research, 7(2), 11-36.
[7] Burszta‐Adamiak, E., Stańczyk, J., & Łomotowski, J. (2019). Hydrological performance of green roofs in the context of the meteorological factors during the 5‐year monitoring period. Water and environment journal, 33(1), 144-154.
[8] Carter, T. L., & Rasmussen, T. C. (2006). Hydrologic behavior of vegetated roofs 1. JAWRA Journal of the American Water Resources Association, 42(5), 1261-1274.
[9] Chen, P.Y., Tung, C.P., Lo, W.H., Li, Y.H. (2014). Towards the practicability of a heat transfer model for green roofs. Ecological Engineering (submitted).
[10] Cipolla, S. S., Maglionico, M., & Stojkov, I. (2016). A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecological Engineering, 95, 876-887.
[11] County, P. G. S., & June, M. D. (1999). Low-impact development design strategies: An integrated design approach. Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland.
[12] Cristiano, E., Deidda, R., & Viola, F. (2020). The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Science of the Total Environment, 143876.
[13] Fassman-Beck, E., Voyde, E., Simcock, R., & Hong, Y. S. (2013). 4 Living roofs in 3 locations: Does configuration affect runoff mitigation?. Journal of Hydrology, 490, 11-20.
[14] Garofalo, G., Palermo, S., Principato, F., Theodosiou, T., & Piro, P. (2016). The influence of hydrologic parameters on the hydraulic efficiency of an extensive green roof in mediterranean area. Water, 8(2), 44.
[15] Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192.
[16] Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192.
[17] Hakimdavar, R., Culligan, P. J., Finazzi, M., Barontini, S., & Ranzi, R. (2014). Scale dynamics of extensive green roofs: Quantifying the effect of drainage area and rainfall characteristics on observed and modeled green roof hydrologic performance. Ecological Engineering, 73, 494-508.
[18] Harper, G. E., Limmer, M. A., Showalter, W. E., & Burken, J. G. (2015). Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127-133.
[19] Hellies, M., Deidda, R., & Viola, F. (2018). Retention performances of green roofs worldwide at different time scales. Land Degradation & Development, 29(6), 1940-1952.
[20] Hilten, R. N., Lawrence, T. M., & Tollner, E. W. (2008). Modeling stormwater runoff from green roofs with HYDRUS-1D. Journal of hydrology, 358(3-4), 288-293.
[21] Jim, C. Y., & Peng, L. L. (2012). Substrate moisture effect on water balance and thermal regime of a tropical extensive green roof. Ecological Engineering, 47, 9-23.
[22] Li, Y., & Babcock Jr, R. W. (2014). Green roof hydrologic performance and modeling: a review. Water science and technology, 69(4), 727-738.
[23] Liu, L., Sun, L., Niu, J., & Riley, W. J. (2020). Modeling green roof potential to mitigate urban flooding in a Chinese City. Water, 12(8), 2082.
[24] Magill, J. D., Midden, K., Groninger, J., & Therrell, M. (2011). A history and definition of green roof technology with recommendations for future research. Southern Illinois University Carbondale,[online] http://opensiuc. lib. siu. edu/cgi/viewcontent. cgi.
[25] Martens, R. (2020). Implementing Integrated Sustainable Roof Design (ISRD) in the Netherlands, Robin Martens. Copyright© Authors, 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission in writing, from the authors. The opinions expressed here are the author’s own; they do not necessarily reflect the views of any institutions. Part of Assignments-As-Products (APP) and Digitally Enhanced Eligible Products, 115.
[26] Nardini, A., Andri, S., & Crasso, M. (2012). Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: shrubs versus herbaceous plants. Urban Ecosystems, 15(3), 697-708.
[27] Palla, A., & Gnecco, I. (2015). Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of hydrology, 528, 361-368.
[28] Palla, A., Gnecco, I., & Lanza, L. G. (2009). Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof. Journal of Hydrology, 379(1-2), 193-204.
[29] Poë, S., Stovin, V., & Berretta, C. (2015). Parameters influencing the regeneration of a green roof’s retention capacity via evapotranspiration. Journal of Hydrology, 523, 356-367.
[30] Rawls, W.J., Brakensiek, D.L., Miller, N. (1983). Green-Ampt infiltration parameters from soils data. J. Hydraul. Div., Am. Soc. Civ. Eng., 109(1), 62-70
[31] Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities and challenges–A review. Renewable and Sustainable Energy Reviews, 90, 757-773.
[32] She, N., & Pang, J. (2010). Physically based green roof model. Journal of hydrologic engineering, 15(6), 458-464.
[33] Simmons, M. T., Gardiner, B., Windhager, S., & Tinsley, J. (2008). Green roofs are not created equal: the hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosystems, 11(4), 339-348.
[34] Stojkov, I., Cipolla, S. S., Maglionico, M., Bonoli, A., Conte, A., Ferroni, L., & Speranza, M. (2017, September). Hydrological performance of Sedum species compared to perennial herbaceous species on a full-scale green roof in Italy. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215 (pp. 117-120).
[35] Stovin, V., Vesuviano, G., & Kasmin, H. (2012). The hydrological performance of a green roof test bed under UK climatic conditions. Journal of hydrology, 414, 148-161.
[36] Viola, F., Hellies, M., & Deidda, R. (2017). Retention performance of green roofs in representative climates worldwide. Journal of Hydrology, 553, 763-772.
[37] Voyde, E., Fassman, E., Simcock, R., Wells, J. (2010). Quantifying evapotranspiration rates for New Zealand green roofs. Journal of Hydrologic Engineering, 15(6), 395-403.
[38] Zhang, Q., Miao, L., Wang, X., Liu, D., Zhu, L., Zhou, B., ... & Liu, J. (2015). The capacity of greening roof to reduce stormwater runoff and pollution. Landscape and Urban Planning, 144, 142-150.
[39] Zhang, Z., Szota, C., Fletcher, T. D., Williams, N. S., & Farrell, C. (2019). Green roof storage capacity can be more important than evapotranspiration for retention performance. Journal of environmental management, 232, 404-412.

論文全文檔清單如下︰
1.電子全文連結(5442.923K)
(本資料20241101後電子全文公開)
紙本授權註記:2024/12/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *