帳號:guest(3.14.15.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:陳銘誼
作者(外文):Ming-Yi Chen
論文名稱:應用微波雷達監測海流之演算法流程改善
論文名稱(外文):Process Improvement of Algorithm for Monitoring Sea Surface Currents with X-band Microwave Radar
指導教授:錢樺
學位類別:碩士
校院名稱:國立中央大學
系所名稱:水文與海洋科學研究所
學號:108626004
出版年:110
畢業學年度:109
語文別:中文法文
論文頁數:134
中文關鍵詞:X-Band微波雷達對比度受限自適應直方圖均衡化分散關係式擬合雷達測深測流VAP速度方位角方法
外文關鍵詞:X-band microwave radarcontrast-limited adaptive histogram equalizationDispersion relation fittingbathymetry and current estimationvelocity-azimuth processing technique
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以岸基X-band微波雷達作為主要觀測工具。本研究之目的在於建立一套可供作業化應用之近岸流場反演流程,與評估水深資料反演之可行性。本文研究方法為現場實驗資料之分析,包括為降低微波雷達量測波浪的回波訊號對距離和方向之依賴性,增進圖像中波紋的亮暗對比,改善雷達影像的品質,並開發計算流程與各階段產品之檢視與比對,根據分析視窗之子影像的大小、解析度以及子影像時序列張數在分析海表面流場時,其對方法所造成的影響決定所採用之參數。
本研究以位於新北市的中央氣象局白沙灣近岸海象微波雷達於2020年1月27至28日觀測資料,以及位於桃園市觀音海岸的大潭微波雷達於2021年1月5日至11日觀測資料作為案例,藉由對比度受限自適應直方圖均衡化對雷達影像進行預處理,強化回波圖像的波紋特徵後,利用二維及三維傅立葉轉換分別求取一維雷達徑向及二維海面空間的角頻率及波數關係,並由波向和轉速對頻率和波數設定值進行修正,後以分散關係式擬合此頻域訊號求得雷達徑向流速,並以都卜勒流速剖面儀之現地實測海流資料進行比對,最後試圖以速度-方位角處理(velocity-azimuth processing, VAP)技巧,將徑向流速轉化為空間流場。
應用對比度受限的自適應直方圖均衡化結果,可增進分散關係式在受海流影響的範圍內訊號與其他雜訊之訊噪比約10%,有關於海流的演算改善約6.7%。
In this study, coastal-based X-band microwave radar is used as the subject observation tool. The purpose of this paper is to reduce the dependence of the echo signal on the range and direction of the microwave radar when doing wave measurement, to improve the contrast between the brightness and darkness of the wave pattern, to reconstruct the bathymetry from the wave signal, to retrieve the radial velocity of the radar, and to estimate the current fields. In addition, the effect of the size and resolution of the sub-images (analyzed window) and the number of pictures of the sub-images time-series on the analysis of the sea surface flow field and their applicability to the method are investigated.
The data of this study, the microwave radar of the Central Weather Bureau's Baisha Bay near-shore in New Taipei City was observed from January 27 to 28, 2020, and the microwave radar of Daitan in Guanyin Coast of Taoyuan City was observed from January 5 to 11, 2021, as case studies. The radar image is pre-processed by contrast-limited adaptive histogram equalization (CLAHE) to enhance the stripe characteristics of the radar echo image, and then the relationship between angular frequency and wavenumber are obtained using two-dimensional and three-dimensional fast fourier transformations for the one-dimensional radar radial and two-dimensional sea surface space, respectively. The radar radial velocities are then compared with the in situ current data from the acoustic doppler current profiler, and finally, the velocity-azimuth processing (VAP) technique is used to convert the radial velocities into spatial flow fields.
The result of applying contrast-limited adaptive histogram equalization, it can improve the signal-to-noise ratio of the signal affected by ocean currents inside the dispersion relation shell and other noise by about 10%, and the accuracy of retrieving ocean currents improved by about 6.7%.
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
符號說明 xiii

ㄧ、緒論 1
1-1 前言 1
1-2 研究動機與目的 3
二、微波雷達理論與文獻探討 4
2-1 微波雷達回波與成像原理 4
2-1-1 微波雷達硬體運行過程 7
2-1-2 微波雷達圖像產生 7
2-1-3 微波雷達圖像資料分析理論基礎 10
2-2 微波雷達測深文獻回顧 12
2-2-1 標準化純量積法 16
2-2-2 線性傳播運算子驅動法 19
2-2-3 分散式表面分級法DiSC 20
2-2-4 光學影像估測法cBathy 23
2-2-5 小波轉換反演法 25
2-3 微波雷達測流文獻回顧 28
2-3-1 迭代的最小平方法 31
2-3-2 極座標殼層演算法 32
2-3-3 交叉譜分析法 34
三、微波雷達資料分析之水深與海流推算 37
3-1 資料來源 37
3-1-1 白沙灣實驗 37
3-1-2 大潭實驗 38
3-2 雷達資料前置處理與改善 39
3-2-1 座標轉換及決定盲區 39
3-2-2 減去平均場移除趨勢 41
3-2-3 對比度受限自適應直方圖均衡化 42
3-2-4 子影像選取之影響 48
3-2-5 圖像張數之影響 49
3-3 自雷達資料獲取分散關係方法 50
3-3-1 三維傅立葉轉換 50
3-3-2 二維傅立葉轉換 52
3-3-3 波向及轉速校正 53
3-4 利用微波雷達資料重建水深 56
3-4-1 分散關係式擬合 57
3-4-2 水深結果 59
3-5 利用微波雷達資料估測海流 61
3-5-1 受流影響之分散關係式擬合 62
3-5-2 白沙灣徑向流速擬合結果 63
3-5-3 以VAP方法計算大潭流場結果 66
四、結論與建議 69
參考文獻 72
附錄一 77
附錄二 81
附錄三 90
附錄四 114

[ 1 ] 吳立中、李汴軍、高家俊、董東璟、郭純伶:〈航海雷達在觀測海洋波浪與流之開發〉,《海洋及水下科技季刊》,15(2),2005,8-15頁。
[ 2 ] 吳立中、董東璟、林家豐、高家俊:〈從雷達影像萃取近岸海域表面流場之研究〉,《海洋工程學刊》,6(2),2006,81-94頁。
[ 3 ] 吳立中、董東璟、高家俊、曾鈞敏:〈應用航海雷達於空間波場觀測之研究-空間波流場之分析〉,中華民國第 27 屆海洋工程研討會論文集,國立中興大學,台中市,2005,28-34頁。
[ 4 ] 吳立中、莊士賢、高家俊、王仲豪:〈X-band 雷達影像應用於解析海面非均勻特徵之研究〉,中華民國第 34 屆海洋工程研討會論文集,國立成功大學,台南市,2012,655-660頁。
[ 5 ] 林家豐、高家俊、董東璟、張育瑋:〈應用 X-band 雷達於分析海面流況之研究〉,中華民國第 27 屆海洋工程研討會論文集,國立中興大學,新竹市,2005。
[ 6 ] 董東璟、吳立中、Trizna, D.:〈利用同調 (Coherence)雷達從事海洋波流觀測〉,《海洋及水下科技季刊》,21(1),2011,23~28頁。
[ 7 ] 錢樺、鄭皓元、林昭暉、賴堅戊:〈同調微波雷達開發及應用於近岸流場觀測〉,中華民國第 35屆海洋工程研討會論文集,國立中山大學,高雄市,2013,731-736頁。
[ 8 ] 錢樺、鄭皓元、林昭暉、賴堅戊:〈海象觀測同調性都卜勒微波雷達的開發〉,中華民國第 36 屆海洋工程研討會論文集,國立交通大學,新竹市,2014,653-656頁。
[ 9 ] 賴民順,〈低掠角微波雷達海面背向散射強度受波浪影響程度之探討〉,碩士論文,國立中央大學,民國100年7月。
[ 10 ] 魏世聰,〈微波雷達與CCD影像分析於潮間帶地形測量之應用〉,碩士論文,國立中央大學,民國101年6月。
[ 11 ] Abileah, R., “Mapping near shore bathymetry using wave kinematics in a time series of WorldView-2 satellite images. ” Int. Geosci. Remote Sens. Symp. (IGARSS) 2, 2013, pp. 2274–2277.
[ 12 ] Abileah, R., Trizna, D.B., “Shallow water bathymetry with an incoherent X-band radar using small (smaller) space-time image cubes.” Int. Geosci. Remote Sens. Symp. (IGARSS) 2, 2010, pp. 4330–4333.
[ 13 ] Bell, P.S., “Bathymetry derived from an analysis of x-band marine radar images of waves.” Proc. Oceanology’98, 1998, pp. 535–543.
[ 14 ] Bell, P.S., “Shallow water bathymetry derived from an analysis of X-band marine radar images of waves.” Coast. Eng. 37 (3-4), 1999, pp. 513–527
[ 15 ] Bell, P.S., Osler, J.C., “Mapping bathymetry using X-band marine radar data re-corded from a moving vessel.” Ocean Dyn. 61 (12), 2011, pp. 2141–2156.
[ 16 ] Chen Z., Zhang B., Kudryavtsev V., He Y., Chu X., “Estimation of Sea Surface Current from X-Band Marine Radar Images by Cross-Spectrum Analysis” Remote Sens. 2019, 11(9), 1031
[ 17 ] Chernyshova, P., Vrecicaa, T., Streßerb, M., Carrascob, R., Toledoa, Y., “Rapid wavelet-based bathymetry inversion method for nearshore X-band radars” Remote Sens. Environ. 240 111688, 2020.
[ 18 ] Gangeskar, R., “Ocean Current Estimated From X-Band Radar Sea Surface Images” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 4, APRIL 2002, pp. 783-792
[ 19 ] Hessner, K., Reichert, K., Rosenthal, W., “Mapping of sea bottom topography in shallow seas by using a nautical radar.” 2nd Symposium on Operationalization of Remote Sensing. 1999.
[ 20 ] Holman, R., Plant, N., Holland, T., “CBathy: a robust algorithm for estimating nearshore bathymetry.” J. Geophys. Res. Oceans 118 (5), 2013, pp. 2595–2609.
[ 21 ] Holman, R.A., Brodie, K.L., Spore, N.J., “Surf zone characterization using a small quadcopter: technical issues and procedures.” IEEE Trans. Geosci. Remote Sens.55 (4), 2017.
[ 22 ] Horstmann, J., Nieto-Borge, J.C., Seemann, J., Carrasco, R., Lund, B., “Wind, wave, and current retrieval utilizing X-band marine radars.” Coastal Ocean Observing Systems, Liu, Y., Kerkering, H., Weisberg, R.H., Eds.; Academic Press: London, UK, 2015, pp. 281–304.
[ 23 ] Kennedy, A., Dalrymple, R., Kirby, J., Chen, Q., “Determination of inverse depth suing direct Boussinesq modeling. J. Water w. Port” Coast. Ocean Eng. 126 (4), 2000, pp. 206–214
[ 24 ] Lund, B., Graber, H. C., Tamura, H. , Collins III, C. O., Varlamov, S. M., “A new technique for the retrieval of near-surface vertical current shear from marine X-band radar images” JGR: Oceans, 2015, pp. 8466-8486
[ 25 ] Lund, B., Haus, B. K., Graber, H. C., Horstmann, J., Carrasco, R., Novelli, G., Guigand, C. M., Mehta, S., Laxague, N. J. M., Özgökmen, T. M., “Marine X-Band Radar Currents and Bathymetry: An Argument for a Wave Number-Dependent Retrieval Method” JGR: Oceans, 2020, pp. 8466-8486
[ 26 ] Röhrs, J., Sutherland, G., Jeans, G., Bedington, M, Sperrevik, A. K., Dagestad, K.-F., Gusdal, Y., Mauritzen, C., Dale, A., LaCasce, J. H., “Surface currents in operational oceanography: Key applications, mechanisms, and methods” J. Operat. Oceanogr., 0 , 2021, pp. 1-29
[ 27 ] Rutten, J., De Jong, S.M., Ruessink, G., “Accuracy of nearshore bathymetry inverted from X-band radar and optical video data.” IEEE Trans. Geosci. Remote Sens. 55 (2), 2017, pp. 1106–1116.
[ 28 ] Senet, C.M., Seemann, J., Flampouris, S., Ziemer, F., “Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface (November 2007).” IEEE Trans. Geosci. RemoteSens. 46 (8), 2008, pp. 2267–2279.
[ 29 ] Senet, C. M., Seemann, J, Ziemer, F., “The Near-Surface Current Velocity Determined from Image Sequences of the Sea Surface” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 3, MARCH 2001, pp. 492-505
[ 30 ] Serafino, F., Lugni, C., Soldovieri, F., “A Novel Strategy for the Surface Current Determination From Marine X-Band Radar Data” IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 7, NO. 2, APRIL 2010, pp. 231-235
[ 31 ] Serafino, F., Lugni, C., Nieto Borge, J.C., Zamparelli, V., Soldovieri, F., “Bathymetry determination via X-band radar data: a new strategy and numerical results.” Sensors10 (7), 2010, pp. 6522–6534
[ 32 ] Shen L., Huang W., Eric W. Gill, St. John’s, “Application of Polar-Current-Shell-Based Algorithm for Surface Current Extraction From Shipborne X-band Nautical Radar Images” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015.
[ 33 ] Shen L., Huang W., Eric W. Gill, Ruben Carrasco, Jochen Horstmann, “An Algorithm for Surface Current Retrieval from X-band Marine Radar Images” remote sensing, 2015, pp. 7753-7767
[ 34 ] Wang, L., Wu, X., Pi, X., Ma, K., Liu, J., Tian, Y., “Numerical simulation and in-version of offshore area depth based on X-band microwave radar.” Acta Oceanol. Sin.34 (3), 2015, pp. 108–114.
[ 35 ] Zhou, Y., Stull, R., Nissen, R., “Single-Doppler radar wind-field retrieval experiment on a qualified velocity-azimuth processing technique.” AMS, 2005, pp. 4.11.
論文全文檔清單如下︰
1.電子全文連結(13351.889K)
(電子全文 已開放)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *