|
[1] Ulas, M., Aydur, O., Gurgenc, T., & Ozel, C. (2020). Surface roughness prediction of machined aluminum alloy with wire electrical discharge machining by different machine learning algorithms.Journal of Materials Research and Technology, 9(6), 12512-12524. [2] Ho, K. H., Newman, S. T., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12-13), 1247-1259. [3] Esme, U., Sagbas, A., & Kahraman, F. (2009). Prediction of surface roughness in wire electrical discharge machining using design of experiments and neural networks. [4] Kumar, A., Kumar, V., & Kumar, J. (2012). Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology. international journal of engineering and technology, 2(4), 708-719.. [5] Fan, C. L., & Jiang, J. R. (2019, October). Surface roughness prediction based on Markov chain and deep neural network for wire electrical discharge machining. In 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 191-194). IEEE. [6] Jiang, J. R., & Yen, C. T. (2020, September). Markov Transition Field and Convolutional Long Short-Term Memory Neural Network for Manufacturing Quality Prediction. In 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 1-2). IEEE. [7] Jiang, J. R., & Cheng, Z. K. (2020, September). Product Quality Prediction with Deep Transfer Learning for Smart Factories. In 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 1-2). IEEE. [8] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), 6765-6816. [9] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. [10] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018, October). A survey on deep transfer learning. In International conference on artificial neural networks (pp. 270-279). Springer, Cham. [11] Convolutional layers: https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/ [12] Keras Tuner: https://keras-team.github.io/keras-tuner/ [13]Deep Transfer Learning: https://zh-tw.coderbridge.com/series/d4b5a1a1565e4e7a9cd14618ffe6146f/posts/54584ea6d4c240aeb3b8ae4af3a0531a [14]Hyperband: https://zhuanlan.zhihu.com/p/53088201 [15]Convolution blocks: https://towardsdatascience.com/history-of-convolutional-blocks-in-simple-code-96a7ddceac0c [16]Bayesian : https://www.itread01.com/content/1541298849.html [17] Keras-Tuner: https://github.com/keras-team/keras-tuner [18] Fahim, M., Fraz, K., & Sillitti, A. (2020). TSI: Time series to imaging based model for detecting anomalous energy consumption in smart buildings. Information Sciences, 523, 1-13. [19] Jiang, J. R. (2018). An improved cyber-physical systems architecture for Industry 4.0 smart factories. Advances in Mechanical Engineering, 10(6), 1687814018784192. [20] Wang, Z., & Oates, T. (2015, January). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the twenty-ninth AAAI conference on artificial intelligence (Vol. 1). [21] CHMER - Q4025L: http://www.chmer.com/tw/products-view.php?id=76, accessed in June 2020. [22] Tokyo Seimitsu – Surfcom 130A: http://www.accretech.com.cn/surfcom.html, accessed in June 2020. [23] Surface roughness: https://tw.misumi-ec.com/pdf/tech/MSM1/Surface_Roughness.pdf, accessed in June 2020. [24] Qureshi, A. S., Khan, A., Zameer, A., & Usman, A. (2017). Wind power prediction using deep neural network based meta regression and transfer learning. Applied Soft Computing, 58, 742-755.. [25] Qureshi, A. S., & Khan, A. (2019). Adaptive transfer learning in deep neural networks: Wind power prediction using knowledge transfer from region to region and between different task domains. Computational Intelligence, 35(4), 1088-1112. [26] 放電加工原理: http://120.114.52.149/~4970H089/wiki/index.php/%E6%94%BE%E9%9B%BB%E5%8A%A0%E5%B7%A5 [27] Batch Normalization: http://violin-tao.blogspot.com/2018/02/ml-batch-normalization.html [28] Global Average Pooling: https://www.cnblogs.com/hutao722/p/10008581.html [29] LSTM: https://daniel820710.medium.com/%E5%88%A9%E7%94%A8keras%E5%BB%BA%E6%A7%8Blstm%E6%A8%A1%E5%9E%8B-%E4%BB%A5stock-prediction-%E7%82%BA%E4%BE%8B-1-67456e0a0b [30] 馬可夫鏈: https://zh.wikipedia.org/wiki/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E9%93%BE [31] Duarte, D., Nex, F., Kerle, N., & Vosselman, G. (2018). Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote sensing, 10(10), 1636. [32] Singh, T., Kumar, P., & Misra, J. P. (2019). Surface roughness prediction modelling for wedm of aa6063 using support vector machine technique. In Materials Science Forum (Vol. 969, pp. 607-612). Trans Tech Publications Ltd. [33] Thankachan, T., Prakash, K. S., Malini, R., Ramu, S., Sundararaj, P., Rajandran, S., ... & Jothi, S. (2019). Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks. Applied Surface Science, 472, 22-35. [34] Yusoff, Y., Zain, A. M., Sharif, S., Sallehuddin, R., & Ngadiman, M. S. (2018). Potential ANN prediction model for multiperformances WEDM on Inconel 718. Neural Computing and Applications, 30(7), 2113-2127. [35] Phate, M. R., & Toney, S. B. (2019). Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network. Engineering Science and Technology, an International Journal, 22(2), 468-476. [36] Surya, V. R., Kumar, K. V., Keshavamurthy, R., Ugrasen, G., & Ravindra, H. V. (2017). Prediction of machining characteristics using artificial neural network in wire EDM of Al7075 based in-situ composite. Materials Today: Proceedings, 4(2), 203-212. [37] Gurupavan, H. R., Devegowda, T. M., Ravindra, H. V., & Ugrasen, G. (2017). Estimation of machining performances in WEDM of aluminium based metal matrix composite material using ANN. Materials Today: Proceedings, 4(9), 10035-10038. [38] WEDM: https://www.researchgate.net/figure/Working-principle-of-WEDM_fig2_260107358 [39] CNN: https://shihs.github.io/blog/machine%20learning/2019/02/25/Machine-Learning-Covolutional-Neural-Networks(CNN)/ [40]Batch Normalization: Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR. [41]CBR: Hazirbas, C., Ma, L., Domokos, C., & Cremers, D. (2016, November). Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. In Asian conference on computer vision (pp. 213-228). Springer, Cham. [42] Jiang, J. R., & Yen, C. T. (2021). Product Quality Prediction for Wire Electrical Discharge Machining with Markov Transition Fields and Convolutional Long Short-Term Memory Neural Networks. Applied Sciences, 11(13), 5922. |