|
[1] Stuxnet (https://en.wikipedia.org/wiki/Stuxnet) [2] Karnouskos, S. (2011, November). Stuxnet worm impact on industrial cyber-physical system security. In IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society (pp. 4490-4494). IEEE. [3] Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. [4] Guérillot, D. R., & Bruyelle, J. (2017, March). Uncertainty assessment in production forecast with an optimal artificial neural network. In SPE Middle East oil & gas show and conference. Society of Petroleum Engineers. [5] Activation function (https://en.wikipedia.org/wiki/Activation_function) [6] Yang, Y. C., & Jiang, J. R. (2019, October). Web-based Machine Learning Modeling in a Cyber-Physical System Construction Assistant. In 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 478-481). IEEE [7] Autoencoder (https://en.wikipedia.org/wiki/Autoencoder) [8] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103).
[9] Park, S., Gil, M. S., Im, H., & Moon, Y. S. (2019). Measurement noise recommendation for efficient Kalman filtering over a large amount of sensor data. Sensors, 19(5), 1168. [10] Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011, January). Contractive auto-encoders: Explicit invariance during feature extraction. In Icml. [11] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. [12] Tomek, I. (1976). Two modifications of CNN. [13] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. [14] Ho, T. K. (1995, August). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). IEEE. [15] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. [16] Kearns, M. (1988). Learning Boolean formulae or finite automata is as hard as factoring. Technical Report TR-14-88 Harvard University Aikem Computation Laboratory. [17] Kearns, M., & Valiant, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM (JACM), 41(1), 67-95. [18] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. [19] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. [20] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). [21] Centre for Research in Cyber Security, iTrust. (https://itrust.sutd.edu.sg/) [22] Mathur, A. P., & Tippenhauer, N. O. (2016, April). SWaT: a water treatment testbed for research and training on ICS security. In 2016 international workshop on cyber-physical systems for smart water networks (CySWater) (pp. 31-36). IEEE. [23] Ahmed, C. M., Palleti, V. R., & Mathur, A. P. (2017, April). WADI: a water distribution testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (pp. 25-28). [24] Adepu, S., Kandasamy, N. K., & Mathur, A. (2018). Epic: An electric power testbed for research and training in cyber physical systems security. In Computer Security (pp. 37-52). Springer, Cham. [25] Gómez, Á. L. P., Maimó, L. F., Celdran, A. H., Clemente, F. J. G., Sarmiento, C. C., Masa, C. J. D. C., & Nistal, R. M. (2019). On the generation of anomaly detection datasets in industrial control systems. IEEE Access, 7, 177460-177473. [26] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. [27] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural computation, 13(7), 1443-1471. [28] Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In 2008 eighth ieee international conference on data mining (pp. 413-422). IEEE. [29] Ning, B., Qiu, S., Zhao, T., & Li, Y. Power IoT Attack Samples Generation and Detection Using Generative Adversarial Networks. In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2) (pp. 3721-3724). IEEE. [30] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661. [31] https://sthalles.github.io/intro-to-gans/ [32] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR [33] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [34] Batista, G. E., Bazzan, A. L., & Monard, M. C. (2003, December). Balancing Training Data for Automated Annotation of Keywords: a Case Study. In WOB (pp. 10-18). [35] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. [36] dmlc XGBoost (https://xgboost.ai/) [37] Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G. Z. (2019). XAI—Explainable artificial intelligence. Science Robotics, 4(37).
|