|
[1] Credit card。取自https://www.britannica.com/topic/credit-card [2] Credit Card Statistics。2021年02月,取自 https://shiftprocessing.com/credit-card/ [3] Credit Card Fraud。取自https://www.fbi.gov/scams-and-safety/common-scams-and-crimes/credit-card-fraud [4] Sixgill:Dark Web Financial Fraud Spikes in Second Half of 2019: Over 76 million Credit Cards for Sale。2020年1月27日,取自https://blog.cybersixgill.com/dark-web-financial-fraud-2019 [5] Jacob Lunduski:Identity Theft & Credit Card Fraud Has Exploded in Recent Years 。2021年02月10日,取自https://www.creditcardinsider.com/blog/annual-fraud-and-identity-theft-analysis/ [6] Nilsonreport :Card Fraud Losses Reach $28.65 Billion。取自https://nilsonreport.com/content_promo.php?id_promo=16 [7] Nathaniel Lee:Credit card fraud will increase due to the Covid pandemic, experts warn。2021年02月01日,取自https://www.cnbc.com/2021/01/27/credit-card-fraud-is-on-the-rise-due-to-covid-pandemic.html [8]Avantika Shergil:Credit card fraud and technical solutions。2021年02月11日,取自https://itchronicles.com/technology/credit-card-fraud-and-technical-solutions/ [9] O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. [10]Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A., & Tsunoda, T. (2019). DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Scientific reports, 9(1), 1-7. [11] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58. [12]Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. [13]He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE. [14] 人工智慧、機器學習和深度學習哪裡不一樣?。2019年08月28日, 取自https://medium.com/marketingdatascience/%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E5%93%AA%E8%A3%A1%E4%B8%8D%E4%B8%80%E6%A8%A3-90ff862bf9b4 [15] Lynn:人工智慧、機器學習、深度學習之間不是等號,而是一層包一層2017年08月05日,取自https://www.thenewslens.com/article/75335 [16] 你知道機器學習(Machine Learning),有幾種學習方式嗎? 取自 https://www.ecloudvalley.com/zh-hant/machine-learning/ [17]LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. [18] Artifical neural network(ANN),取自https://chenhh.gitbooks.io/multiperiod_portfolio_optimization/content/ml/ann/ [19]神經元。取自http://www.hkpe.net/hkdsepe/human_body/neuron.htm
[20] 第三張、神經網路, 取自https://nccur.lib.nccu.edu.tw/bitstream/140.119/35873/6/25700606.pdf [21] Nagesh Singh Chauhan : Introduction to Artificial Neural Networks,取自https://www.kdnuggets.com/2019/10/introduction-artificial-neural-networks.html [22] Shruti Jadon : Introduction to Different Activation Functions for Deep Learning,2018年05月16日取自https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092 [23] 卷積神經網絡, 取自 https://polakowo.io/datadocs/docs/deep-learning/cnns [24] MK Gurucharan:Basic CNN Architecture: Explaining 5 Layers of Convolutional Neural Network, 2020年12月07日 取自https://www.upgrad.com/blog/basic-cnn-architecture/ [25] 卷積神經網路(Convolutional Neural Networks,CNN),2020年09月13日,取自https://blog.xuite.net/metafun/life/589355242 [26] Pumsirirat, A., & Yan, L. (2018). Credit card fraud detection using deep learning based on auto-encoder and restricted boltzmann machine. International Journal of advanced computer science and applications, 9(1), 18-25. [27] Zamini, M., & Montazer, G. (2018, December). Credit card fraud detection using autoencoder based clustering. In 2018 9th International Symposium on Telecommunications (IST) (pp. 486-491). IEEE. [28] Rai, A. K., & Dwivedi, R. K. (2020, July). Fraud detection in credit card data using unsupervised machine learning based scheme. In 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 421-426). IEEE. [29] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science. [30] Salakhutdinov, R., Mnih, A., & Hinton, G. (2007, June). Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th international conference on Machine learning (pp. 791-798). [31] Candel, A., Parmar, V., LeDell, E., & Arora, A. (2016). Deep learning with H2O. H2O. ai Inc. [32] Raghavan, P., & El Gayar, N. (2019, December). Fraud detection using machine learning and deep learning. In 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 334-339). IEEE. [33] Parmar, J., Patel, A. C., & Savsani, M. (2020). Credit Card Fraud Detection Framework–A Machine Learning Perspective. [34]Naveen, P., & Diwan, B. (2020, October). Relative Analysis of ML Algorithm QDA, LR and SVM for Credit Card Fraud Detection Dataset. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 976-981). IEEE [35] Rtayli, N., & Enneya, N. (2020). Selection features and support vector machine for credit card risk identification. Procedia Manufacturing, 46, 941-948. [36]Lin, T. H., & Jiang, J. R. (2020, December). Anomaly Detection with Autoencoder and Random Forest. In 2020 International Computer Symposium (ICS) (pp. 96-99). IEEE. [37] Choubey, R., & Gautam, P. COMBINED TECHNIQUE OF SUPERVISED CLASSIFIER FOR THE CREDIT CARD FRAUD DETECTION. [38] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. [39] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. [40] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). [41] Tharwat, A. (2016). Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition, 3(2), 145-180. [42] Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2015, December). Calibrating probability with undersampling for unbalanced classification. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 159-166). IEEE. [43] Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016). Grad-cam: Why did you say that?. arXiv preprint arXiv:1611.07450. |