帳號:guest(18.97.9.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者:李育霖
作者(外文):Yu-Lin Li
論文名稱:非平穩非週期單變數時間序列異常檢測
論文名稱(外文):Anomaly Detection for Non-Stationary and Non-Periodic Univariate Time Series
指導教授:江振瑞
指導教授(外文):Jehn-Ruey Jiang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學號:107522120
出版年:109
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:物聯網異常檢測單變數時間序列小波轉換深度學習自動編碼器
外文關鍵詞:Internet of ThingsAnomaly DetectionUnivariate Time SeriesWavelet TransformDeep LearningAutoencoder
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於物聯網的快速發展,人們在生活周遭部署的感測器產生大量的時間序列,造成對時間序列分析的需求大量增加,而異常檢測則是時間序列的重要分析需求。由於近年來有許多做異常檢測的研究,本論文聚焦於非平穩和非週期性時間序列的異常檢測研究,因為開發此類時間序列的異常檢測方法較具挑戰性。
本論文針對非平穩和非週期性的單變數時間序列提出一個名為WAAD(wavelet autoencoder anomaly detection)的異常檢測方法。此方法首先針對經由移動時窗切割的時間序列執行離散小波轉換來得到小波轉換係數,之後再藉由一個自動編碼器來對這些係數進行編碼和解碼(重建)。WAAD會對每個移動時窗計算重建誤差,並檢查是否存在連續k個上升而且同時都超過λ的重建誤差,其中k和λ為事先訂好的閥值。如果前述條件成立,就判斷為有異常發生。
目前有個已知的方法可以將時間序列分類為三類,分別是平穩時間序列、週期性時間序列和非平穩且非週期性時間序列。然後WAAD可以用來進行非平穩和非週期時間序列的異常偵測。本論文使用五個來自NAB資料庫的非平穩和非週期時間序列來評測WAAD的效能並和其他相關的方法進行比較。比較的結果顯示WAAD相較於其他方法具有較佳的精確度、召回率和F1-分數。
Due to the rapid development of the Internet of Things, sensors attached to people around their living environments generate a large number of time series data. This causes a huge demand for time series analysis. Anomaly detection is important for time series analysis; there has been much anomaly detection research in recent years. This thesis focuses on anomaly detection for non-stationary and non-periodic time series, as it is more challenging to perform anomaly detection for such a type of time series.
This thesis proposes an anomaly detection method called wavelet autoencoder anomaly detection (WAAD) for non-stationary and non-periodic univariate time series. The proposed method first applies discrete wavelet transform on time series of a sliding time window to obtain wavelet transform coefficients, and then uses an autoencoder to encode and decode (reconstruct) these coefficients. WAAD calculates the reconstruction error for every time window and checks if there exist k increasing and continuous errors larger than λ, where k and λ are pre-specified thresholds. If so, an anomaly is assumed to be detected.
An existing method can be applied to classify time series as one of the following classes: stationary, periodic, and non-stationary and non-periodic time series. The proposed WAAD is then applied for non-stationary and non-periodic time series anomaly detection. Five non-stationary and non-periodic time series from NAB datasets are used for evaluating WAAD performance. The evaluated results are also compared with those of related methods. The comparison results show that WAAD outperforms others in terms of the precision, recall, and F1-score.
中文摘要 V
Abstract VI
誌謝 VIII
圖目錄 XI
表目錄 XII
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究方法與貢獻 1
1.3 論文架構 2
二、 背景知識 3
2.1 異常檢測 3
2.2 時間序列 3
2.3 小波轉換 4
2.4 深度學習 6
2.4.1 類神經網路 6
2.4.2 深度學習介紹 10
2.4.2.1 監督式學習 11
2.4.2.2 非監督式學習 11
2.4.2.3 半監督式學習 11
2.4.3 激勵函數 12
2.4.4 多層感知器 13
2.4.5 自動編碼器 13
2.5 相關文獻研究 15
2.6使用自動編碼器之相關文獻探討 16
2.7基於統計與深度學習之單變數時間序列異常檢測 18
三、 研究方法 23
3.1 資料集 23
3.2 資料前處理 25
3.3 Wavelet Autoencoder Anomaly Detection 25
3.4 評估標準 29
四、 實驗和分析 31
4.1 實驗環境 31
4.2 實驗結果與分析 31
五、 結論和未來展望 41
參考文獻 42
[1] The Numenta Anomaly Benchmark, https://github.com/numenta/NAB
[2] S. Lee, H. K. Kim (November 2018). ADSaS: Comprehensive Real-time Anomaly Detection System. arXiv preprint arXiv:1811.12634v1
[3] Kao, J. B., & Jiang, J. R. (2019, October). Anomaly Detection for Univariate Time Series with Statistics and Deep Learning. In 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 404-407). IEEE.
[4] C. Kyung-hyun, B. Fethi, S. Holger, B. Dzmitry, B. Yoshua. Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machine Translation. Association for Computational Linguistics.
[5] P. Casas, J. Mazel, and P. Owezarski. Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge. Comput. Commun., vol. 35, no. 7, pp. 772–783, 2012.
[6] I. Kang, M. K. Jeong, and D. Kong. A differentiated one-class classification method with applications to intrusion detection. Expert Syst. Appl., vol. 39, no. 4, pp. 3899–3905, 2012.
[7] Ye, N. (2000, June). A markov chain model of temporal behavior for anomaly detection. In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop (Vol. 166, p. 169). West Point, NY.
[8] Jiang, G., Xie, P., He, H., & Yan, J. (2017). Wind turbine fault detection using a denoising autoencoder with temporal information. IEEE/Asme transactions on mechatronics, 23(1), 89-100.
[9] Lee, D. (2017, December). Anomaly detection in multivariate non-stationary time series for automatic DBMS diagnosis. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 412-419). IEEE.
[10] Nayak, R., Pati, U. C., & Das, S. K. (2020, February). Video Anomaly Detection using Convolutional Spatiotemporal Autoencoder. In 2020 International Conference on Contemporary Computing and Applications (IC3A) (pp. 175-180). IEEE.
[11] Kim, S., Jo, W., & Shon, T. (2020). APAD: Autoencoder-based Payload Anomaly Detection for industrial IoE. Applied Soft Computing, 88, 106017.
[12] Hsieh, R. J., Chou, J., & Ho, C. H. (2019, November). Unsupervised Online Anomaly Detection on Multivariate Sensing Time Series Data for Smart Manufacturing. In 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA) (pp. 90-97). IEEE.
[13] Yin, C., Zhang, S., Wang, J., & Xiong, N. N. (2020). Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[14] Hosseini, A., & Sarrafzadeh, M. (2019, May). Unsupervised Prediction of Negative Health Events Ahead of Time. In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 1-4). IEEE.
[15] Habeeb, R. A., Nasaruddin, F., Gani, A., Amanullah, M. A., Hashem, I. A. T., Ahmed, E., & Imran, M. (2019). Clustering-based real-time anomaly detection—a breakthrough in big data technologies. Transactions on Emerging Telecommunications Technologies, vol. 0, no. 0, p. e3647, e3647.
[16] Baradaran, N., Reddy, A., & Thakur, R. S. (2019). U.S. Patent No. 10,318,886. Washington, DC: U.S. Patent and Trademark Office.
[17] Sheridan, K., Puranik, T. G., Mangortey, E., Pinon-Fischer, O. J., Kirby, M., & Mavris, D. N. (2020). An Application of DBSCAN Clustering For Flight Anomaly Detection During The Approach Phase. In AIAA Scitech 2020 Forum (p. 1851).
[18] Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015, April). Long short term memory networks for anomaly detection in time series. In Proceedings (Vol. 89). Presses universitaires de Louvain.
[19] C. Raghavendra, C. Sanjay (2019). DEEP LEARNING FOR ANOMALY DETECTION: A SURVEY. arXiv preprint arXiv:1901.03407
[20]神經元, http://www.hkpe.net/hkdsepe/human_body/neuron.htm
[21]活學活用類神經網路, https://blogs.sas.com/content/sastaiwan/2020/02/25/%E6%B4%BB%E5%AD%B8%E6%B4%BB%E7%94%A8%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E5%A6%82%E4%BD%95%E9%81%8B%E7%94%A8sas-em%E6%8F%90%E5%8D%87%E9%A1%9E%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF%E6%A8%A1/
[22]人工神經網路, https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C
[23] Yang, Y. C., & Jiang, J. R. (2019, October). Web-based Machine Learning Modeling in a Cyber-Physical System Construction Assistant. In 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 478-481). IEEE.
[24]自動編碼器簡介與應用範例, https://blog.yeshuanova.com/2018/01/autoencoder-tutorial/
[25]Continuous wavelet transform, https://en.wikipedia.org/wiki/Continuous_wavelet_transform
[26]Discrete wavelet transform, https://en.wikipedia.org/wiki/Discrete_wavelet_transform
論文全文檔清單如下︰
1.電子全文連結(2281.934K)
(電子全文 已開放)
紙本授權註記:2022/9/1開放
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *