|
[1] The Numenta Anomaly Benchmark, https://github.com/numenta/NAB [2] S. Lee, H. K. Kim (November 2018). ADSaS: Comprehensive Real-time Anomaly Detection System. arXiv preprint arXiv:1811.12634v1 [3] V. Chandola, V. Mithal, V. Kumar (2008). Comparative evaluation of anomaly detection techniques for sequence data.Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 743-748, doi:10.1109/ICDM.2008.151. [4] C. V. Loan (SIAM, 1992). Computational Frameworks for the Fast Fourier Transform. Cornell University, Ithaca, New York. [5] W. James-Cooley, W. John-Tukey (1965). An algorithm for the machine calculation of complex Fourier series. [6] K. Pearson (20 June 1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58 : 240–242. [7] B. Robert, S. William, I. Terpenning (1990). STL: A seasonal-trend decomposition procedure based on loess.Journal of Official Statistics 6.1. [8] D. A. Dickey, W. A. Fuller (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association,74,p 427–431. [9] Y. LeCun, D. Touresky, G. Hinton, T. Sejnowski (June 1988). A theoretical framework for back-propagation. In Proceedings of the 1988 connectionist models summer school(pp. 21-28). CMU, Pittsburgh, Pa: Morgan Kaufmann. [10] S. Hochreiter, J. Schmidhuber (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [11] C. Kyung-hyun, B. Fethi, S. Holger, B. Dzmitry, B. Yoshua. Learning Phrase Representations using RNN Encoder–Decoderfor Statistical Machine Translation. Association for Computational Linguistics. [12] W. Wang, R. Battiti (2005). Identifying Intrusions in Computer Networks based on Principal Component Analysis. First International Conference on Availability, Reliability and Security,IEEE. [13] L. Norman-Tasfi, A. Wilson-Higashino, G. Katarina, Miriam A. M. Capretz(2017).Deep Neural Networks With Confidence Sampling For Electrical Anomaly Detection. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). [14] H. Takanori, O. Jun, M. Masahiro, O. Tetsuji (2018). Tandem Connectionist Anomaly Detection Use of Faulty Vibration Signals in Feature Representation Learning. 2018 IEEE International Conference on Prognostics and Health Management (ICPHM) [15] D. P. Kingma, J. Ba (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [16] I. Kang, M. K. Jeong, and D. Kong. A differentiated one-class classification method with applications to intrusion detection. Expert Syst. Appl., vol. 39, no. 4, pp. 3899–3905, 2012. [17] P. Casas, J. Mazel, and P. Owezarski. Unsupervised network intrusion detection systems: Detecting the unknown without knowledge. Comput. Commun., vol. 35, no. 7, pp. 772–783, 2012. [18] F. Simmross-Wattenberg, J. I. Asensio-Perez, P. Casaseca-de-la-Higuera, M. Martin-Fernandez, I. A. Dimitriadis, C. Alberola-Lopez. Anomaly detection in network traffic based on statistical inference and alpha-stable modeling. IEEE Trans. Depend. Sec. Comput, vol. 8, no. 4, pp. 494–509, 2011. [19] C. Raghavendra, C. Sanjay (2019). DEEP LEARNING FOR ANOMALY DETECTION: A SURVEY. arXiv preprint arXiv:1901.03407
|