帳號:guest(3.133.113.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林碧玲
論文名稱(中文):不同順序的電腦模擬實驗和動手做實驗對國小學生科學學習成就及概念理解的影響-以「燃燒」為例
指導教授(中文):王姿陵
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:數理教育研究所
學號:10286006
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:191
中文關鍵詞:燃燒動手做實驗電腦模擬實驗概念理解概念改變另有概念
外文關鍵詞:burninghands-on experimentsvirtual experimentsconceptual understanding,conceptual changealternative concept
相關次數:
  • 推薦推薦:0
  • 點閱點閱:92
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的在找出不同順序電腦模擬實驗及動手做實驗對國小學生在燃燒主題的學習成就和概念理解的影響。
  本研究採準實驗研究設計,參與的樣本來自一所公立國小五年級五個班級的學生,共139人。各班分別隨機選派至實驗組VPP(電腦模擬-動手做實驗-動手做實驗)、實驗組PVP(動手做實驗-電腦模擬-動手做實驗)、實驗組PPV(動手做實驗-動手做實驗-電腦模擬)、實驗組VVV(電腦模擬-電腦模擬-電腦模擬)、實驗組PPP(動手做實驗-動手做實驗-動手做實驗)。研究工具包含:燃燒主題成就測驗及燃燒主題二階診斷測驗。
  本研究的重要發現如下:
一、 要使用動手做實驗或電腦模擬實驗,與策略優勢及概念性質有關。例如:火焰熄滅過程會忽明忽滅,不只是火光漸小而熄滅,學生會以看到的現象做為思考依據,使用電腦模擬實驗可簡化現象讓學生聚焦在概念上。需體驗氧氣濃度愈高,火焰燃燒愈激烈,讓學生體會燃燒時氧氣的參與,此時動手做實驗有能讓學生感受到光與熱的獨特優勢。要了解點火升溫的原理,使學生學習不受火焰傳遞的感官表象誤導,電腦模擬實驗可微觀燃燒的物理及化學變化,讓學生理解燃燒反應中,各種成份參與反應的過程。
二、 學生學習複雜困難的概念時,活動間使用動手做實驗及電腦模擬實驗的適當教學順序,有助於概念理解。例如:要理解燃燒的物理及化學變化,使用電腦模擬實驗有其獨特的優勢,但也受前面兩個活動順序的影響。因此,VVV組於活動一簡化過程聚焦在概念上,活動二讓學生初步建立微觀經驗,活動三微觀燃燒的物理及化學變化,能使學生得到較佳的概念理解。但是PPV組,學生習於感官體驗,固著於受看得見的表象誤導,即使在最關鍵的活動三使用電腦模擬實驗微觀燃燒的物理及化學變化,也不能達到概念理解的較佳效果。
The purpose of this study is to identify the best teaching combination of virtual experiments and hands-on experiments on fifth graders’ learning achievement and conceptual understanding of burning.
The quasi-experimental design was used in this study. Participants included 139 fifth-graders in 5 classes from a public elementary school. Each class was selected by convenience sampling as the experimental groups VPP (virtual experiments - hands-on experiments - hands-on experiments), the experimental group PVP (hands-on experiments - virtual experiments - hands-on experiments), the experimental group PPV (hands-on experiments - hands-on experiments - virtual experiments), the experimental group VVV (virtual experiments - virtual experiments - virtual experiments), or the experimental group PPP (hands-on experiments - hands-on experiments - hands-on experiments). The combustion science achievement test and the combustion two-tier diagnostic test were included as research instruments.
The major findings of this study are as follows:
1. Whether to use hands-on or computer simulation experiments is depended on their affordances and the target concept. For example, when the candle is going out, the fire may flicker except for getting smaller. Students think according to what they see. They might be misled by the flickering of the fire. Applying the computer simulation helps students to simplify the phenomenon (the fire is getting smaller) and focus on the concept. Hands-on experiments make students feel the light and heat, so they can understand the fact that it requires more oxygen to flame intensely and appreciate the participation of oxygen in combustion. To make students understand the principle of setting fire to get the temperature rise, the microscopic computer simulation of the physical and chemical changes in burning makes students understand the combustion reaction as well as the various components involved in the reaction process and avoids misleading them to the sensory representation of the flame.
2. To make students get complicated concepts, applying the appropriate teaching sequence of hands-on experiments and computer simulation does help students with the comprehension. In the case of understanding the physical and chemical changes in burning, computer simulation has its unique affordances which, however, may be reduced by the order of the two previous activities. In Group VVV, the computer simulation simplified the process and focused on the concept in Activity I. The computer simulations helped students to establish the initial microstructure experience in Activity II. In Activity III, the computer simulation of the physical and chemical changes in proposed microscopic burning also made students get the concepts better. However, in Group PPV, students weren’t able to well get the concept due to the misleading representation of their sensible experience although the microscopic computer simulation of the physical and chemical changes in burning was applied in Activity III.
第一章 緒論………………………………………………………………………… 1
第一節 研究動機……………………………………………………………… 1
第二節 研究目的與問題……………………………………………………… 2
第三節 名詞解釋……………………………………………………………… 3
第四節 研究範圍與限制……………………………………………………… 3
第二章 文獻探討…………………………………………………………………… 5
第一節 動手做實驗及電腦模擬實驗的優勢………………………………… 5
第二節 動手做實驗及電腦模擬實驗的實證研究…………………………… 8
第三節 結合動手做實驗及電腦模擬實驗的實證研究………………………10
第四節 有關燃燒的另有概念…………………………………………………15
第三章 研究方法與設計……………………………………………………………19
第一節 研究流程………………………………………………………………20
第二節 研究設計………………………………………………………………25
第三節 研究對象………………………………………………………………27
第四節 研究教材………………………………………………………………28
第五節 研究工具………………………………………………………………31
第六節 實驗教學教材內容……………………………………………………35
第七節 資料收集與分析………………………………………………………41
第四章 研究結果與討論……………………………………………………………45
第一節 兩種教學策略及其不同教學順序對自然科學習成就的影響………45
第二節 兩種教學策略及其不同教學順序對概念理解的影響………………54
第五章 結論與建議……………………………………………………………… 151
參考文獻……………………………………………………………………………155
一、 中文部份……………………………………………………………………155
二、 英文部份……………………………………………………………………156
附錄…………………………………………………………………………………162
附錄一 燃燒主題成就測驗………………………………………………… 162
附錄二 燃燒主題二階診斷測驗…………………………………………… 164
附錄三 電腦模擬-動手做-動手做教學教案設計………………………… 167
附錄四 動手做-電腦模擬-動手做教學教案設計………………………… 172
附錄五 動手做-動手做-電腦模擬教學教案設計………………………… 177
附錄六 電腦模擬-電腦模擬-電腦模擬教學教案設計…………………… 182
附錄七 動手做-動手做-動手做教學教案設計…………………………… 187
一、 中文部份
王文科(2010)。教育研究法。台北:五南。
王光平(2005):以概念構圖之動畫評量策略探究國小六年級學童「燃燒」概念的概念
學習。國立台北師範學院自然科學教育研究所碩士論文。未出版。
王瓏真(2003):中小學生對於燃燒之迷思概念研究。國立台中師範學院自然科學教育
學系碩士班碩士論文。
李錦坤(2005)。網路化科學推理學習對國小學生燃燒概念重建與推理能力提昇之影響。 
  新竹:國立交通大學理學院碩士在職專班網路學習組碩士論文。
林合彥(2004)。具有教學支援的網路化模擬學習環境。台北:國立臺灣師範大學資訊教
  育研究所碩士論文。
郭國成(2002):國小學童「燃燒」概念另有概念之研究。國立屏東師範學院數理教育
研究所碩士論文。
張君容(2000):發展二段式紙筆測驗探討國中學生「燃燒」之概念。國立高雄師範大
學科學教育研究所碩士論文。
張君容(2009):電腦動畫促進中學生「燃燒」微觀粒子概念發展之研究。國立彰化師
範大學科學教育研究所博士論文。
鄭豐順(1997):國中學生燃燒概念之診斷與探討。台北:國立台灣師範大學碩士論文,
  未出版。
顏君叡(2008):以概念構圖的動態評量策略探究國小五年級學童之概念學習。國立台北
教育大學自然科學教育學系教學碩士班碩士論文。
自然與生活科技5上教師手冊(34~36頁) (2014)。台南:南一版。
國小自然與生活科技領域五上課本(2013)。台南:南一版。

二、 英文部份
Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12–16).
Studies in Science Education, 18, 53–85.
Akpan, J.P. & Andre, T. (2000). Using a computer simulation before dissection to help
  students learn anatomy. Journal of Computers in Mathematics and Science Teaching,
  19(3), 297-313.
Bell, R. L., Blair, L. M., Crawford, B. A. & Lederman, N. G. (2003). Just do it? Impact of a
science apprenticeship program on high school students’ understandings of the nature of
science and scientific inquiry. Journal of Research in Science Teaching, 40 (5), 487–509.
Boujaoude,S. B. (1991).A study of the nature of students’ understanding about the concept of
burning.Journal of Research in Science Teaching,28(8),689-704.
Bredderman, T. (1982). What research says: activity science-the evidence shows it matters. Science and Children, 20(1) , 39-41.
Bloom, B. (Ed.) (1956). Taxonomy of educational objectives: The classification of
  educational goals. New York: David McKay Company.
Chang, K. E., Chen, Y. L., Lin, H.Y. & Sung, Y.T.(2008). Effects of learning support in
simulation-based physics learning. Computers & Education, 51,1486–1498.
Chini, J. J., Madsen, A., Gire, E., Rebello, N. S. & Puntambekar, S. (2012).Exploration of
factors that affect the comparative effectiveness of physical and virtual manipulatives in
an undergraduate laboratory. Physical Review Special Topics - Physics Education
  Research,8(1), 010113(12).
Dalgarno, B., Bishop, A. G., Adlong, W., & Bedgood, D. R. (2009). Effectiveness of a virtual
  laboratory as a preparatory resource for distance education chemistry students.
  Computers & Education, 53(3), 853–865.
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science
  and engineering education.Science, 340, 305–308.
Field, A. (2009). Discovering statistics using SPSS. Third edition. Sage Publications, London,
  UK.
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., & Reid, S. (2005). When learning about the real world is better done virtually: A study
  of substituting computer simulations for laboratory equipment. The American Physical
  Societ,1(1), 010103(8).
Flick (1993). The meanings of hands-on science. Journal of Science Teacher Education,
4(1), 1-8.
Gabel, D.L., Stockton, J.D.,Monaghan, D.L., & MaKinster, J. G. (2001).Changing children's
conceptions of burning. School Science and Mathematics, 101(8),439-451.
Gibbons, N. J., Evans, C., Payne, A., Shah, K., & Griffin, D. K. (2004). Computer
  simulations improve university instructional laboratories. Cell Biology Education, 3(4),
  263–269.
Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G., & Puntambekar, S.
  (2010). The effects of physical and virtual manipulatives on students’ conceptual
  learning about pulleys. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the
  disciplines: Proceedings of the 9th International Conference of the Learning Sciences,
  1, 937–944.
Gregory, R. L., (2001). Hands on science. The challenges for science: Education for the
Twenty-First Century,181-194.
Haury, D. L., & Rillero, P.(1994). Perspectives of hands-on science teaching.ERIC, Clearinghouse fok Science, Mathematics, and Environmental Education, 10-27.
Huppert, J., Lomask, S. M.,& Lazarowitz, R. (2002). Computer simulations in the high
school: Students’ cognitive stages, science process skills and academic achievement in
  microbiology. International Journal of Science Education, 24, 803–821.
Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students' understanding of
  simple electricity by combining simulation and laboratory activities. Journal of
  Computer Assisted Learning, 24(4), 271-283.
Jaakkola, T., Nurmi, S., & Veermans, K. (2010). A Comparison of students’ conceptual
  understanding of electric circuits in simulation only and simulation-laboratory contexts. Journal of Research in Science Teaching, 48, 71-93.
Johnson, P. (2002). Children’s understanding of substances, Part 2: Explaining chemical change. International Journal of Science Education, 24, 1037–1054.
Klahr, D., Triona, L.M. and Williams, C. (2007).Hands on what? The relative effectiveness of   
  physical vs. virtual materials in an engineering design project by middle school children.  
  Journal of Research in Science Teaching, 44(1), 183–203.
Kollöffel, B. & de Jong, T. (2013) .Conceptual understanding of electrical circuits in
secondary vocational engineering education: Combining traditional instruction with
inquiry learning in a virtual lab. Journal of Engineering Education,102(3), 375–393.
Limniou, M. Papadopoulos, N. Giannakoudakis, A. Roberts, D. & Otto, O. (2007).The
integration of a viscosity simulator in a chemistry laboratory. Chem. Educ. Res. Pract., 8,
220-231.
Liu, X., & Lesniak, K. (2006). Progression in children’s understanding of the matter concept
from elementary to high school. Journal of Research in Science Teaching, 43, 320–347.
Ludvico, L.R. & Morrow, B.L. (2014). Blended inquiry with hands-on and virtual laboratories: the role of perceptual features during knowledge construction. Interactive Learning Environments, 22, (5), 614–630.
Martínez-Jiménez, P., Pontes-Pedrajas, A., Climent-Bellido, M. S. & Polo, J.(2003).Learning
in chemistry with virtual laboratories. Journal of Chemical Education, 80 (3), 346.
Mattheis, F. E., & Nakayama, G.. (1988). Effects of a laboratory-centered inquiry program on
laboratory skills, science process skills, and understanding of science knowledge in
middle grades students. ERIC, ED 307 148.
Meheut, M., Saltiel, E., & Tiberghien, A. (1985). Pupils’(11-12 years old)conceptions of
combustion. Europeanan of Journal Science Education,7(1),83-93.
Olympiou, G. & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An
effort to improve students' conceptual understanding through science laboratory
experimentation. Science Education,96(1), 21–47.
Olympiou, G., Zacharia, Z. C. & de Jong, T. (2013). Making the invisible visible: Enhancing
  students’ conceptual understanding by introducing representations of abstract objects in a
  simulation. Instructional Science, 41, 575–596.
Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade
  students’ understanding of the particulate nature of matter and transformation during
  phase changes. Computers & Education, 57, 1114–1126.
Pfundt, F. (1982). Pre-instructional conceptions about transformations of substances.
ERIC, ED229235.
Prieto, T., Watson, R. & Dillon,J. S. (1992). Pupils’ understanding of combustion. Research in
Science Education,22,331-340.
Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science
  labs: Attitudes, performance and access. Journal of Science Education and Technology,
  21(1), 133–147.
Rahayu, S. & Tytler, R. (1999).Progression in primary school children’s conception of
burning:toward an understanding of the concept of substance. Research in Science
Education,29(3),295-312.
Randler, C. & Hulde, M. (2007). Hands‐on versus teacher‐centred experiments in soil
ecology. Research in Science & Technological Education,25(3), 329-338.
Renken, M. D., & Nunez, N. (2013). Computer simulations and clear observations do not
  guarantee conceptual understanding. Learning and Instruction, 23, 10–23.
Ross, K. (1991).Burning:a constructive not a destructive process.School Science Review,
72(251), 39-49.
Rutherford, F. J. (1993). Hands-on: a means to an end. 2061 Today, 3(1), 5.Teachers Journal,
28(3), 84-88.
Saunders, W. L. & Shepardson, D.(1984). A comparison of concrete and formal science
instruction upon science achievement and rea-toning ability of sixth grade students.
ERIC, ED 244 797.
Schollum, B. & Happs, J. C. (1982). Learners’view about burning. The Australian Science
Teachers Journal,28(3),84-88.
Stamovlasis, D. & Papageorgiou, G. (2012).Understanding chemical change in primary
education : the effect of two cognitive variables. J Sci Teacher Educ, 23,177–197.
Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of
chemical reaction concept during secondary education. International Journal of Science
Education, 20, 205–221.
Smith, S.W. & Puntambekar, S. (2010).Examining the combination of physical and virtual
  experiments in an inquiry science classroom. Computer Based Learning Science   
  Conference Proceedings.
Solsona, N. J., Izquierdo, M., & De Jong, O. (2003). Exploring the development of students’
conceptual profiles of chemical change. International Journal of Science Education, 25,
3–12.
Taraban, R., Box, C., Myers, R., Pollard, R. & Bowen, C. W.(2007). Effects of active-learning
experiences on achievement, attitudes, and behaviors in high school biology. Journal of
Research In Science Teaching, 44(7), 960–979.
Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students’ achievement.  
  Journal of Educational Technology & Society, 16, 159–170.
Toth, E. E., Morrow, B. L., & Ludvico, L. R. (2009). Designing blended inquiry learning
  in a laboratory context: A study of incorporating hands-on and virtual laboratories.  
  Innovative Higher Education, 33(5), 333 – 344.
Toth, E. E., Ludvico, L. R., & Morrow, B. L. (2014). Blended inquiry with hands-on and
  virtual laboratories: The role of perceptual features during knowledge construction.
  Interactive Learning Environments, 20, 1–17.
Toth, E. E., Suthers, D.D. & Lesgold, A. M. (2002). “Mapping to know”: The effects of
representational guidance and reflective assessment on scientific inquiry.Science
Education,86(2), 264–286.
Triona, L.M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence
  of physical and virtual instructional materials on elementary school students’ ability to
  design experiments. Cognition & Instruction, 21, 149–173.
Triona, L.M. & Klahr, D. (2007). Hands-on science: Does it matter what students' hands are on? The Science Education Review,6(4), 126-130.
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual
  change: a quasi-experimental study. Computers & Education, 54(4), 1078–1088.
Ünlü, Z.K. & Dökme, I. (2011). The effect of combining analogy-based simulation and
laboratory activities on Turkish elementary school students' understanding of simple
electric circuits. Turkish Online Journal of Educational Technology, 10(4), 320-329.
Van der Meij, J.& de Jong, T.(2006). Supporting students’ learning with multiple
representations in a dynamic simulation-based learning environment. Learning and
Instruction 16, 199-212.
Waston, R., Prieto,T. & Dillon, J.S.(1995).The effect of practical work on students’
understanding of combustion. Journal of Research in Science Teaching,32(5),487-502.
Weaver, G. C. (1998). Strategies in K‐12 science instruction to promote conceptual change.
Science Education, 82(4), 455-72.
Westbrook, S. L. & Marek, E. A. (1992).A cross-age study of student understanding of the
  concept of homeostasis. Journal of Research in Science Teaching, 29 (1), 51–61.
Zacharia, Z.C. (2005).The impact of interactive computer simulations on the nature and
quality of postgraduate science teachers’ explanations in physics. International Journal
of Science Education., 27(14), 1741–1767.
Zacharia, Z.C. (2007). Comparing and combining real and virtual experimentation: An effort
  to enhance students’ conceptual understanding of electric circuits. Journal of Computer
  Assisted Learning, 23, 120–132.
Zacharias, Z.C. & Constantinos, P. C. (2008). Comparing the influence of physical and virtual
  manipulatives in the context of the Physics by inquiry curriculum: The case of
  undergraduate students’ conceptual understanding of heat and temperature. American
  Association of Physics Teachers, 425-430.
Zacharias, Z.C., Olympiou, G. & Papaevripidou, M. (2008) Effects of experimenting with
  physical and virtual manipulatives on students’ conceptual understanding in heat and
  temperature. Journal of Researc in Science Teaching, 45(9), 1021–1035.
Zacharias, Z C. & Olympiou, G. (2011). Physical versus virtual manipulative experimentation
  in physics learning. Learning and Instruction, 21, 317-331.
Zacharia, Z.C., Loizou, E., & Papaevripidou, M. (2012). Is physicality an important aspect of
  learning through science experimentation among kindergarten students? Early Childhood
  Research Quarterly, 27, 447–457.
Zacharias, Z.C. & de Jong, T.(2014). The effects on students’ conceptual understanding of
  electric circuits of introducing virtual manipulatives within a physical
manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101–158.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 探討動手做實驗及虛擬實驗對國小學童在電磁鐵單元的學習成就及概念理解之影響
2. 探討虛擬實境融入動手操作導向課程對學生「物質受熱變化」學習成就及概念理解的影響
3. 結合動手做實驗與虛擬實驗對國小學生在科學概念理解和對自然課的態度的影響
4. 年級與性別對國小學生在水的三態變化相關概念學習的影響
5. 年級與性別對國小學生在「燃燒」相關概念學習的影響
6. KWL-HQ策略進行科學閱讀教學對國小學生熱的傳播學習成就、 科學學習動機與概念理解的影響
7. 動手做教學、資訊科技融入教學、結合動手做和資訊科技融入教學三種教學策略對國小學生「水的三態變化」
8. 探討靜態、動態、結合動靜態視覺表徵融入教學對國小學生科學學習成就和科學學習動機的影響
9. 動手做與電腦模擬不同教學順序對國小學生在水的三態變化概念理解和對自然課的態度影響之比較研究
10. 探討結合靜動態表徵對國小學生天氣變化概念理解的影響
11. 探討科學閱讀融入教學對國中學生在「熱的傳播方式」學習成就、概念理解和對理化課學習態度的影響
12. 戶外教學對偏鄉國小學生科學學習成就及對科學的態度之影響
13. 探討虛擬實驗對國中七年級學生在演化學習成就與概念理解的影響
14. 探討視覺表徵形式、空間能力、認知風格和先前知識對國小五年級學生科學學習的影響
15. 探討動手做實驗對不同性別、年級及族群的偏鄉國小學生科學學習成就和對科學的態度的影響
 
* *