|
一、中文部份 余秀麗、譚克平(2005)。國三學生的重力初始概念。科學教育學刊,13(4),413-439。 林宜慧(2010)。動手做教學、資訊科技融入教學、結合動手做和資訊科技融入教學三種教學策略對國小學生「水的三態變化」概念理解之比較研究(未出版之碩士論文)。國立新竹教育大學,新竹市。 林組明(2002)。桃園地區國民小學六年級學生對有關摩擦力之概念研究(未出版之碩士論文)。國立臺北師範學院,臺北市。 林植楷(2002)。發展二段式紙筆測驗探討國中學生「力與運動」之迷思概念(未出版之碩士論文)。國立彰化師範大學,彰化縣。 陳美月(2002)。台北市國民小學中年級兒童對物體運動快慢與力之間的另有概念分析研究(未出版之碩士論文)。國立台北師範學院,臺北市。 張良誠(2002)。國小中高年級學童地心引力迷思概念之探討(未出版之碩士論文)。嘉義大學,嘉義縣。 彭泰源(1999)。國小五年級學童力與運動概念學習之研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。 彭泰源、張惠博(2000)。國小五年級學童「力與運動」概念學習之研究。科學教育,10, 231-262。 董正玲、郭重吉(1992)。利用晤談方式探究國小兒童運動與力概念的另有架構。科學教育, 3,93-124。 楊之明(2005)。國小中高年級學童摩擦力概念之研究。國立台中師範學院自然科學研究所碩士論文。 楊其安、郭重吉(1990)。利用臨床晤談探究國中學生對力學概念的另有架構。科學教育,1,37-59。 楊哲棋(2008)。以POE教學策略進行國小三年級學童有關力學概念之初探研究(未出版之碩士論文)。台北市立大學,臺北市。 楊連智(2007)。動手作探究教學模式與傳統教學模式對國小五年級力學學習成效比較研究(未出版之碩士論文)。臺北市立教育大學,臺北市。 蔡春來(2002)。探討國中生對摩擦力的迷思概念(未出版之碩士論文)。國立臺灣師範大學,臺北市。 蔡昆諭(2005)。國中學生力與運動的迷思概念(未出版之碩士論文)。國立臺灣師範大學,臺北市。 鍾文勳(2002)。國民小學高年級學童對運動速率與力另有概念之研究(未出版之碩士論文)。國立台北師範學院,臺北市。 顏弘志、段曉林(2006)。建構主義取向教學的實踐—一位國小自然科教師信念、教學實務的改變。科學教育學刊,14(5), 571-595.
二、英文部份 Bayraktar, S. (2009). Misconceptions of Turkish pre-service teachers about force and motion. International Journal of Science and Mathematics Education,7(2), 273-291. Bloom, B. S. (Ed.) (1956). Taxonomy of Educational Objective:The Classification of educational goals. Handbook I: Cognitive Domain. New York: Wiley. Bodner, G. M. (1986). Constructivism : A theory of knowledge. Journal of Chemical Education, 63, 873-878. Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics-Physics Education Research, 8(1), 010113. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and Virtual Laboratories in Science and Engineering Education. Science, 340(6130), 305-308. Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students' misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001-1015. Farrokhnia, M. R., & Esmailpour, A. (2010). A study on the impact of real, virtual and comprehensive experimenting on students’ conceptual understanding of DC electric circuits and their skills in undergraduate electricity laboratory. Procedia Social and Behavioral Sciences, 2, 5474-5482. Field, A. (2009). Discovering statistics using SPSS. Sage publications. Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., ... & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics-Physics Education Research, 1, 010103. Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G. & Puntambekar, S. (2010). The effects of physical and virtual manipulatives on students' conceptual learning about pulleys. In Proceedings of the 9th International Conference of the Learning Sciences, 1 (pp. 937-943). Chicago: International Society of the Learning Sciences. Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743. Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396. Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271-283. Jaakkola, T., Nurmi, S., & Veermans, K. (2011). A comparison of students' conceptual understanding of electric circuits in simulation only and simulation‐laboratory contexts. Journal of Research in Science Teaching, 48(1), 71-93. Jimoyiannis, A., & Komis, V. (2003). Investigating Greek students' ideas about forces and motion. Research in Science Education, 33(3), 375-392. Kibble, B. (2006). Understanding forces: what's the problem?. Physics education, 41(3), 228-231. Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183-203. Limón, M., & Mason, L. (Eds.). (2002). Reconsidering conceptual change: Issues in theory and practice. Springer. Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. The American Biology Teacher, 68, 342–345. Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional science, 11(3), 183-200. Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students' conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47. Özmen, H. (2008). The influence of computer-assisted instruction on students’ conceptual understanding of chemical bonding and attitude toward chemistry: A case for Turkey. Computers & Education, 51(1), 423-438 Palmer, D. (2001). Students' alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691-706. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception:Toward a theory of conceptual change. Science education, 66(2), 211-227. Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133-147. Renken, M. D., & Nunez, N. (2013). Computer simulations and clear observations do not guarantee conceptual understanding. Learning and Instruction, 23, 10-23. Toth, E. E., Morrow, B. L., & Ludvico, L. R. (2009). Designing blended inquiry learning in a laboratory context: A study of incorporating hands-on and virtual laboratories. Innovative Higher Education, 33(5), 333-344. Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students' ability to design experiments. Cognition and Instruction, 21, 149-173. Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 1078-1088. Ünlü, Z. K., & Dökme, İ. (2011). The effect of combining analogy-based simulation and laboratory activities on Turkish elementary school students’ understanding of simple electric circuits. The Turkish Online Journal of Educational Technology, 10(4), 320-329. Watts, D. M., & Zylbersztajn, A. (1981). A survey of some children's ideas about force. Physics Education, 16(6), 360-365. Weaver, G. C. (1998). Strategies in K‐12 science instruction to promote conceptual change. Science Education, 82(4), 455-472. Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y. L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43(1), 25-42. Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students' conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120-132. Zacharia, Z.C., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Association Journal of Physics, 71, 618-629. Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76, 425-430. Zacharia, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32(2), 101-158. Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317-331. Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students' conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021-1035.
|