帳號:guest(18.190.253.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高瑞揚
論文名稱(中文):動手做與電腦模擬不同教學順序對國小學生在水的三態變化概念理解和對自然課的態度影響之比較研究
論文名稱(外文):The impact of different sequences of hands-on and computer simulation instructional strategies on elementary school students’ science conceptual understanding and attitudes toward science class of the state changes of water
指導教授(中文):王姿陵
指導教授(外文):Tzu-Ling Wang
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:科學教育教學碩士班
學號:10186003
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:水的三態變化概念改變另有概念動手做教學電腦模擬教學
外文關鍵詞:state changes of waterconceptual changealternative conceptionshands-on instructioncomputer-simulation instruction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:43
  • 收藏收藏:0
本研究的目的在探討動手做與電腦模擬不同教學順序對國小三年級學生在水的三態變化學習成就、概念理解與對自然課的態度的影響。
本研究採準實驗研究設計,參與的樣本來自一所公立國小三年級四個班級的學生,共 116 人。參與的四個班級分別隨機選派兩班至實驗組A (動手做-電腦模擬教學) 和實驗組B (電腦模擬-動手做教學)。研究工具包含水的三態變化成就測驗、水的三態變化概念診斷問卷以及對自然課的態度量表。資料分析採用獨立樣本單因子共變數分析(one-way ANCOVA) 和卡方檢定 (chi-square)。
本研究的重要發現如下:
一、動手做與電腦模擬不同教學順序對學生在水的三態變化學習成就沒有顯著差異。
二、動手做與電腦模擬不同教學順序對學生在蒸發、凝結與沸騰時的蒸發與凝結概念理解沒有顯著差異。
三、動手做與電腦模擬不同教學順序似乎對學生在蒸發概念理解最好,其次是凝結概念理解,而沸騰時的蒸發與凝結概念理解最差。
四、動手做與電腦模擬不同教學順序對學生對自然課的態度沒有顯著差異。
This study investigates the effects of different sequences of hands-on and computer-simulation instructional strategies on third grade elementary school students’ science achievement, their understanding of concepts in the domain of the state changes of water, and their attitudes toward science class.
A quasi-experimental design was used for this study. One hundred and sixteen third grade students from four science classes in an elementary school participated in this study. Of the four science classes, two were assigned as the experimental group A (hands on - computer simulation instruction), and the other two were assigned as the experimental group B (computer simulation – hands on instruction), respectively. Three instruments, the State Changes of Water Achievement Test, the Concept Diagnostic Questionnaire, and the Attitudes Toward Science Class Survey were used to collect data. Research data were analyzed through one-way ANCOVA and chi-square techniques.
The major findings of this study are as follows :
1. No significant difference was found in the two groups’ science achievement for the domain of state changes of water.
2. No significant difference was found in the two groups’ understanding for the concepts of evaporation, condensation, evaporation and condensation in the process of boiling.
3. Both sequences of instructional strategies seem to improve students’ understanding of evaporation most effectively, followed by condensation and evaporation and condensation in the process of boiling.
4. No significant difference was found in the two groups’ attitudes toward science class.

Keywords: state changes of water, conceptual change, alternative conceptions,
hands-on instruction, computer-simulation instruction
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與問題 2
第三節 名詞釋義 2
第四節 研究範圍與限制 3
第二章 文獻探討 5
第一節 建構主義與概念改變 5
第二節 動手做與電腦模擬教學的優勢 7
第三節 動手做與電腦模擬不同教學順序的實證研究 11
第四節 水的三態變化迷思概念的相關研究 14
第三章 研究方法與設計 17
第一節 研究架構 17
第二節 研究流程 19
第三節 研究設計 21
第四節 研究對象 22
第五節 研究教材 23
第六節 研究工具 25
第七節 實驗教學教材內容 30
第八節 資料收集與分析 34
第四章 研究結果與討論 37
第一節 動手做與電腦模擬不同教學順序對學生自然科學習成就的影響 37
第二節 動手做與電腦模擬不同教學順序對學生對自然課的態度的影響 39
第三節 動手做與電腦模擬不同教學順序對學生概念理解的影響 40
第五章 結論與建議 47
引用文獻
一、中文部分 49
二、英文部分 50
附錄
附錄一 水的三態變化成就測驗 59
附錄二 對自然課的態度量表 62
附錄三 水的三態變化概念診斷問卷 66
附錄四 教案設計
一、中文部分
林合彥 (2004)。具有教學支援的網路化模擬學習環境。國立台灣師範大學資訊教育所碩士論文。
林秀美 (1996)。電腦模擬:一個具有潛力的學習環境。視聽教育雙月刊,38(3),16-25。
林秀美 (1998)。電腦模擬在科技教育上之應用。教學科技與媒體,42,23-31。
林陳涌 (1995)。從經驗證據和科學理論之間的關係來探討自然科實驗教學的意義。科學教育月刊,184,2-16。
林顯輝 (1995)。國小兒童蒸發與凝結概念之研究。國科會專題研究研究報告(編號:NSC83-01114-S-153-002)。
邱美虹 (1993)。科學教科書與概念改變。科學教育月刊,163,2-8。
吳永旭 (2003)。以模擬及示範實驗教學探討國中學生對於蒸發、凝結與沸騰概念之學習成效。國立臺灣師範大學化學研究所碩士論文。
吳昌家 (2002)。電腦動畫輔助教學對國中學生粒子概念學習成效之研究。國立臺灣師範大學化學研究所碩士論文。
吳智凱 (2008)。國中生對「水」概念理解的進展. 國立臺灣師範大學化學研究所碩士論文。
郭生玉 (1999)。心理與教育測驗。臺北市:精華。
教育部 (2010)。國民中小學九年一貫課程綱要自然與生活科技學習領域。臺北市:教育部。
康軒 (2014)。自然與生活科技3下教師手冊。臺北市:康軒文教。
張容君 (2010)。電腦動畫促進中學生「燃燒」微觀粒子概念發展之研究。國立彰化師範大學科學教育研究所博士論文。
張凱綸 (2002)。國小學童對「水的三態變化」概念之研究。屏東師範學院數理教育研究所碩士論文。
張敬宜 (1997)。高年級學童蒸發、凝結與沸騰概念研究。科學教育學刊,5(3),321-346。
張敬宜 (1998)。教師對國小四年級學童蒸發、凝結與沸騰概念瞭解之研究。台北師院學報,11,453-472。
張靜嚳 (1996)。建構教學:採用建構主義如何教學?。建構與教學,7,1-8。
黃嘉明 (2003)。國小學童「水的蒸發、凝結、沸騰」迷思概念及心智模式之探討以新屋鄉為例。國立新竹師範學院數理教育碩士班自然組碩士論文。
黃寶鈿、劉靄雯 (1993)。化學師資基本能力及條件之初步研究。師大學報,38,203-222。
曾靖華 (2003)。電腦輔助教學在改變學生基礎物理迷思概念之研究。中華大學應用數學系碩士班碩士論文。
廖美婷 (2012)。 探討建模教學中不同階段融入電腦模擬與實驗活動對於學生光的折射與透鏡學習成效之影響。國立彰化師範大學科學教育研究所碩士論文。
蘇義賢 (2007)。電腦模擬教學在高中生活科技之應用-以室內配線教學為例。國立嘉義大學教育科技研究所碩士論文。


二、英文部分
Akpan, J.P., & Andre, T. (2000). Using a computer simulation before dissection to help students learn anatomy. Journal of Computers in Mathematics and Science Teaching, 19(3), 297-313.
Bar, V., & Galili, I. (1994). Stages of children's views about evaporation. International Journal of Science Education, 16(2), 157-174.
Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28, 363-382.
Barnea, N., & Dori, Y.J. (1999). High-school chemistry students’ performance and gender differences in a computerized molecular modeling learning environment. Journal of Science Education and Technology, 8(4), 257-271.
Barnett M, Morran J (2002) Addressing children’s alternative frameworks of the moon’s phases and eclipses. International Journal of Science Education, 24, 859–879.
Bloom, B. S. (Ed.) (1956). Taxonomy of Educational Objective:The Classification of educational goals. Handbook I: Cognitive Domain. New York: Wiley.
Bodner, G. M. (1986), Constructivism: A theory of knowledge, Journal of Chemical Education, 63(10), 873-878.
Bristow, B. R. (2000). The effects of hands-on instruction on sixth grade students’ understanding of electricity and magnetism. Dissertation Abstracts International, 39(11), 30A. (University Microfilms No. AAT1400301).
Bybee, R. W., & van Scotter, P. (2006). Reinventing the science curriculum. Educational Leadership, 64(4), 43-47.
Carlsen, D., & Andre, T. (1992). Use of a microcomputer simulation and conceptual change text to overcome student preconceptions about electric circuits. Journal of Computer-Based Instruction, 19, 105-109.
Carmichael, A., Chini, J. J., Gire, E., Rebello, N. S., & Puntambekar, S. (2009). Comparing the Effects of Physical and Virtual Experimentation Sequence on Students’ Understanding of Mechanics. Paper presented at the Physics Education Research Conference.
Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics-Physics Education Research, 8(1), 010113.
Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconception: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International Journal of Science Education, 11, 554-565.
Cross, R. T., & Pitekethly, A. (1998). Speed, education and children as pedestrians: a cognitive change approach to a potential dangerous naïve concept. International Journal of Science Education, 10(5), 531-540.
Doerr, H. (1997). Experiment, simulation and analysis: An integrated instructional approach to the concept of force. International Journal of Science Education,19, 265-282.
de Jong, T., & Njoo, M. (1992). Learning and instruction with computer simulation: Learning processes involved.In E. de Corte, M.C. Linn, H. Mandl, & L. Verschaffel (Eds.), Computer-based learning environments and problem solving (pp. 411-427). Berlin: Springer-Verlag.
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179-202.
de Jong, T., & Joolingen, W. R. (1998). Using computer simulations for learning. Review of Educational Research, 68(2), 179-201.
Driver, R. (1983): The pupil as scientist. – Milton Keynes: Open University Press.
Faryniarz, J. V., & Lockwood, L. G. (1992). Effectiveness of microcomputer simulations in stimulating environmental problem solving by community college students. Journal of Research in Science Teaching, 29,453-470.
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., et al. (2005).When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics—Physics Education Research, 1, 1-8.
Flick, L. B. (1993). The meanings of hands-on science. Journal of Science Teacher Education, 4, 1-8.
Gire, E., Carmichael, A., Chini, J. J., Rouinfar, A., Rebello, S., Smith, G., et al. (2010). The effects of physical and virtual manipulatives on students' conceptual learning about pulleys. Paper presented at the Proceedings of the 9th International Conference of the Learning Sciences-Volume 1.
Grayson, D. J., Anderson, T. R., & Crossley, L. G. (2001). A four-level framework for identifying and classifying student conceptual and reasoning difficulties. International Journal of Science Education, 23, 611–622.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71(256), 33-43.
Hofstein, A., Mooz, N., & Rishpon, M. (1990). Attitudes toward school science: A comparison of participants and non-participants in extracurricular science activities. School Science and Mathematics, 90(1), 13-22.
Hofstein A. & Lunetta V. (2004). The laboratory in science education: foundations for the twenty-first century. Science Education, 88, 24-54.
Hsu, Y.-S., & Thomas, R. A. (2002). The impacts of a web-aided instructional simulation on science learning. International Journal of Science Education,24, 955-979.
Hsu, Y.-S. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students’ conceptual change. Science Education, 92, 320-344.
Huppert, J., & Lazarowitz, R. (2002). Computer simulations in the high school: Students’ cognitive stages,science process skills and academic achievement in microbiology. International Journal of Science Education,24, 803-821.
Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271-283.
Johnson, P. (1998a). Children’s understanding of changes of state involving the gas state, part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567-583.
Johnson, P. (1998b). Children’s understanding of changes of state involving the gas state, part 2: Evaporation and condensation below boiling point. International Journal of Science Education, 20(6), 695-709.
Johnstone, A. H. (1982). Macro-and micro-chemistry. School Science Review,64(227), 377-379.
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701.
Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology-enhanced inquiry tools in science education: An emerging pedagogical framework for classroom practice. Science Education, 91, 1010-1030.
Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183-203.
Lee, J. (1999). Effectiveness of Computer-based instruction simulation:A meta-analysis. International Journal of Instructional Media, 26(1), 71-85.
Loomis, J. M., & Lederman, S. J. (1986). Tactual perception. Handbook of perception and human performances, 2, 2.
Lumpe, A. T., & Oliver, J. S.(1991)Dimensions of hands-on science. The American Biology Teacher, 53(6), 345-348.
Lunetta, V., & Hofstein, A. (1991). Simulation and laboratory practical activity. Practical science, 125-150.
MacKinnon, A. (1989). Conceptualizing a hall of mirrors in science teaching paracticum. Paper presented at the meeting of the National Association for Research in Science Teaching, San Francisco, CA.
Marek, E., & Methven, S. (1991). Effects of the learning cycle upon student and classroom teacher performance. Journal of Research in Science Teaching, 28(1), 41-53.
National Research Council (1996). National Science Education Standards. National AcademyPress, Washington, DC.
NSTA, Nation Science Teachers Association (2006). NSTA position statement: The Integral Role of Laboratory Investigations in Science Instruction. Retrieved March, 8, 2006.
Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve students' conceptual understanding through science laboratory experimentation. Science Education, 96(1), 21-47.
Ornstein, A. (2006). The frequency of hands-on experimentation and student attitudes toward science: A statistically significant relation (2005-51-Ornstein). Journal of Science Education and Technology, 15(3), 285-297.
Osborne, J. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049-1079.
Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825–838.
Poudel, D. D., Vincent, L. M., Anzalone, C., Huner, J., Wollard, D., Clement T., DeRamus, A., & Blakewood, G. (2005). Hands-on activities and challenge tests in agricultural and environmental education. The Journal of Environmental Education, 36(4), 10-14.
Posner, G. J., Strike, K. A., Hewson, P.W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Randler, C., & Hulde, M. (2007). Hands-on versus teacher-centered experiments in soil ecology. Research in Science &Technological Education, 25(3), 329-338.
Ronen, M., & Eliahu, M. (2000). Simulation a bridge between theory and reality: The case of electric circuits.Journal of Computer Assisted Learning, 16, 14-26.
Sadi, O., & Cakiroglu, J. (2011). Effects of hands-on activity enriched instruction on students' achievement and attitudes towards science. Journal of Baltic Science Education, 10(2), 87-97.
Sanger, M., & Greenbowe, T. (2000). Addressing standing misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521-537.
Saxena, A. (1992). An attempt to remove misconceptions related to electricity. International Journal of Science Education, 14(2), 157-162.
Shepherd, D. L. & Renner, J. W. (1982). Students' understandings and misunderstandings of the states of matter and density changes. School Science and Mathematics, 82(8), 650-665.
Strike, K.A., & Posner, G.J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (eds.), Philosophy of Science, Cognitive Psychology, and Education Theory and Practice, (pp. 147-176). Albany, NY: SUNY.
Tamir, P. (1976). " Invitations to Inquiry" and Teacher Training. American Biology Teacher, 38(1), 50-52.
Taraban, R., Box, C., Myers, R., Pollard, R., & Bowen, C.W. (2007). Effects of active-learning experiences an achievement, attitudes, and behaviors in high school biology. Journal of Research in Science Teaching, 44(7), 960-979.
Thomas, R., & Neilson, I. (1995). Harnessing simulations in the service of education: The interact simulation environment. Computers & Education, 25(1-2), 21-29.
Thornton, R.K. & Sokoloff, D.R., (1990) Learning motion concepts using real time micro-computer based laboratory tools. American Journal of Physics, 58(9), 858-867.
Toth, E. E., Klahr, D., & Chen, Z. (2000). Bridging research and practice: A cognitively based classroom intervention for teaching experimentation skills to elementary school children. Cognition and Instruction, 18,423-459.
Toth, E. E., Morrow, B. L., & Ludvico, L. R. (2009). Designing blended inquiry learning in a laboratory context:A study of incorporating hands-on and virtual laboratories. Innovative Higher Education, 33(5), 333-344.
Toth, E. E., Ludvico, L. R., & Morrow, B. L. (2012). Blended inquiry with hands-on and virtual laboratories: the role of perceptual features during knowledge construction. Interactive Learning Environments, 22(5), 614-630.
Triona, L. M. & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students’ ability to design experiments. Cognition and Instruction, 21(2), 149-173.
Trundle, K. C.& Bell. R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education. 54, 1078-1088.
Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387–404.
Tytler, R. (2000). A comparison of year 1 and year 6 students' conceptions of evaporation and condensation Dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-467.
Kay, J., Meyer, B. J., Wagoner, D., & Ferguson, L. (2006). Technology affordances: the ‘real story’in research with K‐12 and undergraduate learners. British Journal of Educational Technology, 37(2), 191-209.
Wanderse, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (eds.), Handbook of research on science teaching and learning. NY: Macmillan.
Westbrook, S. L. & Marek, E. A. (1992). A cross-age study of student understanding of the concept of homeostasis. Journal of Research in Science Teaching, 29(1), 51 -61.
White, R. & Gunstone, R. (1992). Prediction-observation-explanation. In R. White & R. Gunstone (eds.), Probing Understanding, (pp. 44-64). London: The Falmer Press.
Windschitl, M. (2000). Supporting the development of science inquiry skills with special classes of software.Educational Technology Research and Development, 48, 81-95.
Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y.-L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43,25-42.
Wu, H. K., Lin, Y. F., & Hsu, Y. S. (2013). Effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing. Instructional Science, 41(3), 555-573.
Zacharia, Z., & Anderson, O.R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618-629.
Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120-132.
Zacharia, Z.C., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Association Journal of Physics, 71, 618-629.
Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76, 425.
Zacharia, Z. C., & de Jong, T. (2014). The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum. Cognition and Instruction, 32(2), 101-158.
Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning.Learning & Instruction, 21, 317-331.
Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021-1035.
Zietsman, A.I., & Hewson, P.W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23, 27-39.
Zollman, D. A., Rebello, N. S., & Hogg, K. (2002). Quantum mechanics for everyone: Hands-on activities integrated with technology. American Journal of Physics, 70, 252.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *