帳號:guest(18.116.37.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊佳惠
作者(外文):Chia-Hui Chuang
論文名稱(中文):探討膠原蛋白水凝膠微環境對血管生成的影響
論文名稱(外文):The effect of collagen hydrogel with microenvironment on vascular formation
指導教授(中文):陳盈潔
指導教授(外文):Ying-Chieh Chen
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10325056
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:膠原蛋白水凝膠血管生成血管
外文關鍵詞:collagenhydrogelvascularblood vessel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:304
  • 評分評分:*****
  • 下載下載:44
  • 收藏收藏:0
摘要
利用組織工程重建人工組織是目前最有機會解決器官捐贈不足的方法,為了提高人工組織的存活率,血管網絡扮演著十分重要的角色,目前的血管組織工程研究中,大部份使用的三維水凝膠支架皆無法獨立調控物理與化學特性,因此不同微環境對於血管生成的影響尚未被釐清。本研究中成功萃取高純度的兔子膠原蛋白分子,透過膠原蛋白分子自組裝的特性,形成纖維狀兔子膠原蛋白水凝膠(rabbit collagen hydrogel),此外,我們利用酪胺修飾兔子膠原蛋白分子後,經由辣根過氧化物(horseradish peroxidase (HRP))與過氧化氫(hydrogen peroxide (H2O2))而形成的孔洞狀的酵素交聯膠原蛋白水凝膠(collagen-Ph hydrogel)。透過這兩種不同交聯方法所形成的具有不同微環境的膠原蛋白水凝膠包裹臍帶血來源集落細胞(human blood-derived endothelial colony-forming cells (ECFCs))和人類白脂肪間質幹細胞(human white adipose mesenchymal stem cell(watMsc)), 利用注射方式植入免疫缺乏鼠皮下,七天取出植入物後,分析血管生成的密度、血管尺寸以及血管組織的大小,探討不同水凝膠微環境對血管生成的影響。透過材料特性的熱穩定性、擴散速率、機械性質、膨潤比、纖維或是孔洞的尺寸以及密度,歸納出血管密度、血管尺寸、血管組織的大小之間的關聯性。實驗結果顯示要有較高血管密度的生成,則選擇具有較低的蛋白質濃度,較高的免疫反應和較快的體內的降解速率的水凝膠,同時也能得到較小的人工血管組織。此外,若要有較大的血管尺寸,則水凝膠需要有較低的降解速率以及較高的免疫反應。透過這些探討,我們可以有效地將這些水凝膠的物理化學特性應用在其他的材料系統上,未來可以根據不同組織對於血管密度的需求不同而精準的調控血管組織的生成。
Abstract
Using tissue engineering to reconstruct artificial tissues is the best way to solve the shortage of organ donation. In order to improve the survival rate of organ transplantation, reconstructing blood vessels network plays an important role. In vascular tissue engineering, most three-dimensional hydrogel can not be independently turned physical and chemical properties, so suitable microenvironment of hydrogel for angiogenesis and vasculargenesis has not been clarified.In this study, high purity rabbit collagen molecules has been successful extracted. Through self-assembly of collagen molecules in nature, the formation of fibrous-like rabbit collagen hydrogel is prepared successafully. In addition, we used tyramine to modify collagen molecules to form enzymatically crosslinked collagen hydrogel (collagen-Ph hydrogel) with hole like structure by adding HRP and H2O2. To evaluate the angiosenesis and vasculargenesis of collagen hydrogels, we mixed human blood-derived endothelial colony-forming cells (ECFCs) and human white adipose mesenchymal stem cell (watMSC) with rabbit collagen hydrogels and collagen-Ph hydrogels with different microenvironment and then injected into immune deficiency mice for evaluation of seven days.The lumen density, the size of lumen, and the size of vascularized tissue were analyzied in hydrogel with different microenvironment. The thermal stability, diffusion rate, mechanical properties, the swelling ratio, microstructure of hydrogels was summarized in the relevance of the size of the number of lumen ,the size of lumen, and the size of vascularized tissue.
The results show that higher density of blood vessels we generated, lower protein concentration, the higher immune response in vivo, faster degradation rate of the hydrogel, and smaller artificial vascular tissue we created.In addition, to have a larger size of vessels in tissue construct, the hydrogel with a lower degradation rate and higher immune response are necessary. Through turning physico-chemical properties of collagen hydrogels, we can effectively apply to other hydrogel systems to generate different vascular density precisely for the demand and reguirement of different tissue and organs.
目錄
致謝 I
摘要 II
Abstract III
第一章、緒論 1
1-1血管組織工程 2
1-1-1目前臨床上的需求 2
1-1-2血管組織工程的現況 2
1-2血管的生成以及研究 4
1-2-1血管網絡的生成:血管新生與血管再生 4
1-2-2內皮細胞在血管生成的訊息傳遞 7
1-2-3共同培養在血管生成的影響 11
1-2-4血管組織工程目前所遇到的瓶頸與解決的方法 19
1-3膠原蛋白的結構與特性 20
1-3-1膠原蛋白的結構 20
1-3-2臨床與研究上所使用的膠原蛋白 21
第二章、材料和實驗方法 24
2-1實驗材料及流程 25
2-2兔子皮膠原蛋白(rabbit collagen)的萃取 28
2-3十二烷基硫酸鈉 - 聚丙烯酰胺凝膠電泳(SDS-PAGE) 29
2-4羥脯胺酸(Hydroxyproline)的定量 29
2-5膠原蛋白功能性檢測 30
2-6膠原蛋白酚羥基(collagen-phenolic hydroxyl conjugates(collagen-Ph conjugate))前驅物的合成 30
2-7氫原子核磁共振儀(H1NMR) 31
2-8膠原蛋白的溶血特性 31
2-9膠原蛋白水凝膠熱穩定性測試 31
2-10膠原蛋白水凝膠的擴散特性 32
2-11膠原蛋白水凝膠成膠時間測定 32
2-12膠原蛋白水凝膠機械性質的檢測 32
2-13膠原蛋白水凝膠的膨潤特性 33
2-14膠原蛋白水濃膠的微結構 33
2-15膠原蛋白體內降解及免疫分析 33
2-16膠原蛋白水凝膠在血管生成的功能性檢測 34
2-17相關係數 34
2-18統計分析 35
第三章、實驗結果 36
3-1兔皮膠原蛋白(rabbit collagen)的萃取與特性檢測 37
3-2膠原蛋白酚羥基(collagen-Ph conjugates)前驅物的合成與溶血測試 38
3-3Rabbit collagen hydrogel和collagen-Ph hydrogel在熱穩定性以及擴散和形貌的比較 39
3-4 Rabbit collagen hydrogel以及collagen-Ph hydrogel在成膠時間以及機械性質的差異 40
3-5探討兩種交聯方式的膠原蛋白在特性上的差異 41
3-6水凝膠在動物體內的降解速率以及免疫反應 43
3-7膠原蛋白水凝膠在體內的血管組織的生成 45
3-8相關係數 48
第四章、討論 51
4-1兔子膠原蛋白分子的萃取與膠原蛋白水凝膠rabbit collagen hydrogel 的特性 52
4-2 酵素交聯膠原蛋白水凝膠的特性 53
4-3膠原蛋白水凝膠的體內探討 55
第五章、結論 59
第六章、圖表 61
第七章、參考文獻 73



圖目錄
圖一、血管生成方式示意圖…………………………………………………………………………………11
圖二、內皮細胞血管生成訊息傳遞示意圖…………………………………………………….…..11
圖三、內皮細胞(ECFC)以及間質幹細胞(MSC)在共同培養的交互作用………..18
圖四 膠原蛋白的結構………………………………………………………………21
圖五、rabbit collagen hydrogel以及collagen-Ph hydrogel的合成…………27
圖六、rabbit collagen hydrogel以及collagen-Ph hydrogel在材料特性以及血管生成的探討…………………………………………………………………………28
圖七、膠原蛋白分子純度鑑定……………………………………………………..61
圖八、rabbit collagen-Ph conjugate的合成與溶血特性………………………...62
圖九、rabbit collagen hydrogel與collagen-Ph hydrogel的成膠機制與水凝膠形貌……………………………………………………………………………………..63
圖十、rabbit collagen hydrogel和collagen-Ph hydrogel的成膠時間以及機械性質的檢測……………………………………………………………………………..64
圖十一、rabbit collagen hydrogel的微結構……………………………………...65
圖十二、collagen-Ph hydrogel的微結構………………………………………….66
圖十三、rabbit collagen hydrogel和collagen-Ph hydrogel的膨潤特性……….67
圖十四、rabbit collagen hydrogel和collagen-Ph hydrogel在動物體內的免疫反應……………………………………………………………………………………..68
圖十五、rabbit collagen hydrogel和collagen-Ph hydrogel在動物體內的血管生成能力………………………………………………………………………………..69








表目錄
表一、膠原蛋白的種類………………………………………………….…………21
表二、血管生成能力-免疫反應-rabbit collagen hydrogel的相關性探討…...70
表三、血管生成能力-免疫反應-collagen-Ph hydrogel的相關性探討………….71
表四、血管生成能力-免疫反應-水凝膠的相關性探討……………………………72
參考文獻
[1] Grinyó JM. Why Is Organ Transplantation Clinically Important? Cold Spring Harbor Perspectives in Medicine 2013;3:a014985.
[2] Salvadori M, Bertoni E. What’s new in clinical solid organ transplantation by 2013. World Journal of Transplantation 2014;4:243-66.
[3] Saidi RF, Hejazii Kenari SK. Challenges of Organ Shortage for Transplantation: Solutions and Opportunities. International Journal of Organ Transplantation Medicine 2014;5:87-96.
[4] Kim JJ, Marks SD. Long-term outcomes of children after solid organ transplantation. Clinics 2014;69:28-38.
[5] Sukmana I. Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct. The Scientific World Journal 2012;2012:201352.
[6] Wang L, Johnson JA, Zhang Q, Beahm EK. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta biomaterialia 2013;9:8921-31.
[7] Moioli EK, Chen M, Yang R, Shah B, Wu J, Mao JJ. Hybrid Adipogenic Implants from Adipose Stem Cells for Soft Tissue Reconstruction In Vivo. Tissue engineering Part A 2010;16:3299-307.
[8] Stosich MS, Mao JJ. Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plastic and reconstructive surgery 2007;119:71-85.
[9] Liu X, Zhang G, Hou C, Wang H, Yang Y, Guan G, et al. Vascularized Bone Tissue Formation Induced by Fiber-Reinforced Scaffolds Cultured with Osteoblasts and Endothelial Cells. BioMed research international 2013;2013:854917.
[10] Llevadot J, Asahara T. Effects of Statins on Angiogenesis and Vasculogenesis. Revista Española de Cardiología (English Version) 2002;55:838-44.
[11] Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 2012;33:6123-31.
[12] Yee D, Hanjaya-Putra D, Bose V, Luong E, Gerecht S. Hyaluronic Acid hydrogels support cord-like structures from endothelial colony-forming cells. Tissue engineering Part A 2011;17:1351-61.
[13] Oliviero O, Ventre M, Netti PA. Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta biomaterialia 2012;8:3294-301.
[14] Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta biomaterialia 2011;7:133-43.
[15] Moon JJ, Saik JE, Poché RA, Leslie-Barbick JE, Lee S-H, Smith AA, et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 2010;31:3840-7.
[16] Van Hove AH, Burke K, Antonienko E, Brown Iii E, Benoit DSW. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo. Journal of Controlled Release 2015;217:191-201.
[17] Jin Y-J, Park I, Hong I-K, Byun H-J, Choi J, Kim Y-M, et al. Fibronectin and vitronectin induce AP-1-mediated matrix metalloproteinase-9 expression through integrin α5β1/αvβ3-dependent Akt, ERK and JNK signaling pathways in human umbilical vein endothelial cells. Cellular Signalling 2011;23:125-34.
[18] Hwang S, Lee H-J, Kim G, Won K-J, Park YS, Jo I. CCN1 acutely increases nitric oxide production via integrin αvβ3–Akt–S6K–phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis. Free Radical Biology and Medicine 2015;89:229-40.
[19] Li Y-J, Li X-H, Wang L-F, Kuang X, Hang Z-X, Deng Y, et al. Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Experimental Eye Research 2014;129:119-26.
[20] Zhang LD, Chen L, Zhang M, Qi HJ, Chen L, Chen HF, et al. Downregulation of ERRalpha inhibits angiogenesis in human umbilical vein endothelial cells through regulating VEGF production and PI3K/Akt/STAT3 signaling pathway. European journal of pharmacology 2015.
[21] Delle Monache S, Sanità P, Calgani A, Schenone S, Botta L, Angelucci A. Src inhibition potentiates antitumoral effect of paclitaxel by blocking tumor-induced angiogenesis. Experimental Cell Research 2014;328:20-31.
[22] Shen K, Ji L, Gong C, Ma Y, Yang L, Fan Y, et al. Notoginsenoside Ft1 promotes angiogenesis via HIF-1alpha mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochemical pharmacology 2012;84:784-92.
[23] Luo H, Rankin GO, Juliano N, Jiang B-H, Chen YC. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway. Food chemistry 2012;130:321-8.
[24] Pan X-Y, Peng L, Han Z-Q, Yin G-Q, Song Y-K, Huang J. Hirudin promotes angiogenesis by modulating the cross-talk between p38 MAPK and ERK in rat ischemic skin flap tissue. Tissue and Cell 2015;47:301-10.
[25] Yoshimoto T, Fujita T, Kajiya M, Matsuda S, Ouhara K, Shiba H, et al. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine 2015;75:165-73.
[26] Wang K, Jiang Yz, Chen Db, Zheng J. Hypoxia Enhances FGF2- and VEGF-Stimulated Human Placental Artery Endothelial Cell Proliferation: Roles of MEK1/2/ERK1/2 and PI3K/AKT1 Pathways. Placenta 2009;30:1045-51.
[27] Lin C-M, Chiu J-H, Wu IH, Wang B-W, Pan C-M, Chen Y-H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α. The Journal of Nutritional Biochemistry 2010;21:627-33.
[28] Mittermayr R, Slezak P, Haffner N, Smolen D, Hartinger J, Hofmann A, et al. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta biomaterialia 2016;29:11-20.
[29] Kanaki T, Bujo H, Mori S, Yanjuan Z, Takahashi K, Yokote K, et al. Functional analysis of aortic endothelial cells expressing mutant PDGF receptors with respect to expression of matrix metalloproteinase-3. Biochemical and Biophysical Research Communications 2002;294:231-7.
[30] Yang H-L, Chang HC, Lin S-W, Senthil Kumar KJ, Liao C-H, Wang H-M, et al. Antrodia salmonea inhibits TNF-α-induced angiogenesis and atherogenesis in human endothelial cells through the down-regulation of NF-κB and up-regulation of Nrf2 signaling pathways. Journal of Ethnopharmacology 2014;151:394-406.
[31] Yang H-L, Korivi M, Lin M-W, Chen S-C, Chou C-W, Hseu Y-C. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochemical pharmacology 2015;98:144-56.
[32] Wang L-S, Lee F, Lim J, Du C, Wan ACA, Lee SS, et al. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature. Acta biomaterialia 2014;10:2539-50.
[33] Singh RK, Seliktar D, Putnam AJ. Capillary Morphogenesis in PEG-Collagen Hydrogels. Biomaterials 2013;34:9331-40.
[34] Kang JH, Gimble JM, Kaplan DL. In Vitro 3D Model for Human Vascularized Adipose Tissue. Tissue engineering Part A 2009;15:2227-36.
[35] Rao RR, Ceccarelli J, Vigen ML, Gudur M, Singh R, Deng CX, et al. Effects of hydroxyapatite on endothelial network formation in collagen/fibrin composite hydrogels in vitro and in vivo. Acta biomaterialia 2014;10:3091-7.
[36] Lin R-Z, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 2012;15:443-55.
[37] Lin RZ, Melero-Martin JM. Fibroblast growth factor-2 facilitates rapid anastomosis formation between bioengineered human vascular networks and living vasculature. Methods 2012;56:440-51.
[38] Battiston KG, Cheung JWC, Jain D, Santerre JP. Biomaterials in co-culture systems: Towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014;35:4465-76.
[39] Lin C-H, Lilly B. Endothelial Cells Direct Mesenchymal Stem Cells Toward a Smooth Muscle Cell Fate. Stem Cells and Development 2014;23:2581-90.
[40] Sun X, Gao X, Zhou L, Sun L, Lu C. PDGF-BB-induced MT1-MMP expression regulates proliferation and invasion of mesenchymal stem cells in 3-dimensional collagen via MEK/ERK1/2 and PI3K/AKT signaling. Cellular Signalling 2013;25:1279-87.
[41] Joo HJ, Seo H-R, Jeong HE, Choi S-C, Park JH, Yu CW, et al. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells. Biochemical and Biophysical Research Communications 2014;449:405-11.
[42] Lee W-Y, Tsai H-W, Chiang J-H, Hwang S-M, Chen D-Y, Hsu L-W, et al. Core–shell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis. Biomaterials 2011;32:8446-55.
[43] Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation research 2008;103:194-202.
[44] Lin RZ, Moreno-Luna R, Li D, Jaminet SC, Greene AK, Melero-Martin JM. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proceedings of the National Academy of Sciences of the United States of America 2014;111:10137-42.
[45] McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta biomaterialia 2013;9:9303-16.
[46] Allen P, Melero-Martin J, Bischoff J. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of tissue engineering and regenerative medicine 2011;5:e74-86.
[47] Stosich MS, Moioli EK, Wu JK, Lee CH, Rohde C, Yoursef AM, et al. Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape. Methods (San Diego, Calif) 2009;47:116-21.
[48] Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Interface 2007;4:413-37.
[49] Liu J, Zheng H, Poh PSP, Machens H-G, Schilling AF. Hydrogels for Engineering of Perfusable Vascular Networks. International journal of molecular sciences 2015;16:15997-6016.
[50] Lee F, Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta biomaterialia 2013;9:5143-52.
[51] Zhang L-M, Wu C-X, Huang J-Y, Peng X-H, Chen P, Tang S-Q. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydrate polymers 2012;88:1445-52.
[52] Fan C, Wang D-A. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. European Polymer Journal 2015;72:651-60.
[53] Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, et al. Microfluidic Techniques for Development of 3D Vascularized Tissue. Biomaterials 2014;35:7308-25.
[54] Kruger TE, Miller AH, Wang J. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration. The Scientific World Journal 2013;2013:6.
[55] Abraham LC, Zuena E, Perez-Ramirez B, Kaplan DL. Guide to collagen characterization for biomaterial studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008;87B:264-85.
[56] El-Khalawany M, Fawzy S, Saied A, Al Said M, Amer A, Eassa B. Dermal filler complications: a clinicopathologic study with a spectrum of histologic reaction patterns. Annals of Diagnostic Pathology 2015;19:10-5.
[57] Liu B, Xu Z, Yu R, Wang J, Wang Z, Harrell CR. The Use of Type I and Type III Injectable Human Collagen for Dermal Fill: 10 Years of Clinical Experience in China. Seminars in Plastic Surgery 2005;19:241-50.
[58] Brongo S, Moccia LS, Nunziata V, D’Andrea F. Keratoacanthoma arising after site injection infection of cosmetic collagen filler. International journal of surgery case reports 2013;4:429-31.
[59] Wiggins R, Goyal M, Merritt S, Killen PD. Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody-induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. Laboratory investigation; a journal of technical methods and pathology 1993;68:557-65.
[60] Bornstein P, Nesse R. The comparative biochemistry of collagen: the structure of rabbit skin colllagen and its relevance to immunochemical studies of collagen. Archives of biochemistry and biophysics 1970;138:443-50.
[61] Wu G, Sun S, Long X, Wang L, Ren S. Early stage minimally invasive procedures reduce perihematomal MMP-9 and blood-brain barrier disruption in a rabbit model of intracerebral hemorrhage. Neurological research 2013;35:649-58.
[62] Tamilmozhi S, Veeruraj A, Arumugam M. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Research International 2013;54:1499-505.
[63] Huang Y-R, Shiau C-Y, Chen H-H, Huang B-C. Isolation and characterization of acid and pepsin-solubilized collagens from the skin of balloon fish (Diodon holocanthus). Food Hydrocolloids 2011;25:1507-13.
[64] Zhang J, Duan R, Huang L, Song Y, Regenstein JM. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye). Food chemistry 2014;150:22-6.
[65] Veeruraj A, Arumugam M, Balasubramanian T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochemistry 2013;48:1592-602.
[66] El-Rashidy AA, Gad A, Abu-Hussein AE-HG, Habib SI, Badr NA, Hashem AA. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. International journal of biological macromolecules 2015;79:618-26.
[67] Tang L, Chen S, Su W, Weng W, Osako K, Tanaka M. Physicochemical properties and film-forming ability of fish skin collagen extracted from different freshwater species. Process Biochemistry 2015;50:148-55.
[68] Huang C-Y, Kuo J-M, Wu S-J, Tsai H-T. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food chemistry 2016;190:997-1006.
[69] Kuo K-C, Lin R-Z, Tien H-W, Wu P-Y, Li Y-C, Melero-Martin JM, et al. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta biomaterialia 2015;27:151-66.
[70] Yang Y-l, Leone LM, Kaufman LJ. Elastic Moduli of Collagen Gels Can Be Predicted from Two-Dimensional Confocal Microscopy. Biophysical Journal 2009;97:2051-60.
[71] Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010;31:8596-607.
[72] Wang LS, Chung JE, Chan PP, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010;31:1148-57.
[73] Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009;30:3371-7.
[74] Li Z, Qu T, Ding C, Ma C, Sun H, Li S, et al. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta biomaterialia 2015;13:88-100.
[75] Chuang C-H, Lin R-Z, Tien H-W, Chu Y-C, Li Y-C, Melero-Martin JM, et al. Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta biomaterialia 2015;19:85-99.
[76] Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release 2009;134:186-93.
[77] Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010;31:5536-44.
[78] Chan BP, Chan OCM, So KF. Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta biomaterialia 2008;4:1627-36.
[79] Ford MC, Bertram JP, Hynes SR, Michaud M, Li Q, Young M, et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America 2006;103:2512-7.
[80] Critser PJ, Kreger ST, Voytik-Harbin SL, Yoder MC. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvascular Research 2010;80:23-30.
[81] Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 2013;34:6785-96.
[82] Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, et al. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Advanced functional materials 2012;22:2027-39.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *