|
參考文獻 [1] Grinyó JM. Why Is Organ Transplantation Clinically Important? Cold Spring Harbor Perspectives in Medicine 2013;3:a014985. [2] Salvadori M, Bertoni E. What’s new in clinical solid organ transplantation by 2013. World Journal of Transplantation 2014;4:243-66. [3] Saidi RF, Hejazii Kenari SK. Challenges of Organ Shortage for Transplantation: Solutions and Opportunities. International Journal of Organ Transplantation Medicine 2014;5:87-96. [4] Kim JJ, Marks SD. Long-term outcomes of children after solid organ transplantation. Clinics 2014;69:28-38. [5] Sukmana I. Microvascular Guidance: A Challenge to Support the Development of Vascularised Tissue Engineering Construct. The Scientific World Journal 2012;2012:201352. [6] Wang L, Johnson JA, Zhang Q, Beahm EK. Combining decellularized human adipose tissue extracellular matrix and adipose-derived stem cells for adipose tissue engineering. Acta biomaterialia 2013;9:8921-31. [7] Moioli EK, Chen M, Yang R, Shah B, Wu J, Mao JJ. Hybrid Adipogenic Implants from Adipose Stem Cells for Soft Tissue Reconstruction In Vivo. Tissue engineering Part A 2010;16:3299-307. [8] Stosich MS, Mao JJ. Adipose Tissue Engineering from Human Adult Stem Cells: Clinical Implications in Plastic and Reconstructive Surgery. Plastic and reconstructive surgery 2007;119:71-85. [9] Liu X, Zhang G, Hou C, Wang H, Yang Y, Guan G, et al. Vascularized Bone Tissue Formation Induced by Fiber-Reinforced Scaffolds Cultured with Osteoblasts and Endothelial Cells. BioMed research international 2013;2013:854917. [10] Llevadot J, Asahara T. Effects of Statins on Angiogenesis and Vasculogenesis. Revista Española de Cardiología (English Version) 2002;55:838-44. [11] Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 2012;33:6123-31. [12] Yee D, Hanjaya-Putra D, Bose V, Luong E, Gerecht S. Hyaluronic Acid hydrogels support cord-like structures from endothelial colony-forming cells. Tissue engineering Part A 2011;17:1351-61. [13] Oliviero O, Ventre M, Netti PA. Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta biomaterialia 2012;8:3294-301. [14] Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta biomaterialia 2011;7:133-43. [15] Moon JJ, Saik JE, Poché RA, Leslie-Barbick JE, Lee S-H, Smith AA, et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 2010;31:3840-7. [16] Van Hove AH, Burke K, Antonienko E, Brown Iii E, Benoit DSW. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo. Journal of Controlled Release 2015;217:191-201. [17] Jin Y-J, Park I, Hong I-K, Byun H-J, Choi J, Kim Y-M, et al. Fibronectin and vitronectin induce AP-1-mediated matrix metalloproteinase-9 expression through integrin α5β1/αvβ3-dependent Akt, ERK and JNK signaling pathways in human umbilical vein endothelial cells. Cellular Signalling 2011;23:125-34. [18] Hwang S, Lee H-J, Kim G, Won K-J, Park YS, Jo I. CCN1 acutely increases nitric oxide production via integrin αvβ3–Akt–S6K–phosphorylation of endothelial nitric oxide synthase at the serine 1177 signaling axis. Free Radical Biology and Medicine 2015;89:229-40. [19] Li Y-J, Li X-H, Wang L-F, Kuang X, Hang Z-X, Deng Y, et al. Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Experimental Eye Research 2014;129:119-26. [20] Zhang LD, Chen L, Zhang M, Qi HJ, Chen L, Chen HF, et al. Downregulation of ERRalpha inhibits angiogenesis in human umbilical vein endothelial cells through regulating VEGF production and PI3K/Akt/STAT3 signaling pathway. European journal of pharmacology 2015. [21] Delle Monache S, Sanità P, Calgani A, Schenone S, Botta L, Angelucci A. Src inhibition potentiates antitumoral effect of paclitaxel by blocking tumor-induced angiogenesis. Experimental Cell Research 2014;328:20-31. [22] Shen K, Ji L, Gong C, Ma Y, Yang L, Fan Y, et al. Notoginsenoside Ft1 promotes angiogenesis via HIF-1alpha mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways. Biochemical pharmacology 2012;84:784-92. [23] Luo H, Rankin GO, Juliano N, Jiang B-H, Chen YC. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFκB-cMyc-p21 pathway. Food chemistry 2012;130:321-8. [24] Pan X-Y, Peng L, Han Z-Q, Yin G-Q, Song Y-K, Huang J. Hirudin promotes angiogenesis by modulating the cross-talk between p38 MAPK and ERK in rat ischemic skin flap tissue. Tissue and Cell 2015;47:301-10. [25] Yoshimoto T, Fujita T, Kajiya M, Matsuda S, Ouhara K, Shiba H, et al. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine 2015;75:165-73. [26] Wang K, Jiang Yz, Chen Db, Zheng J. Hypoxia Enhances FGF2- and VEGF-Stimulated Human Placental Artery Endothelial Cell Proliferation: Roles of MEK1/2/ERK1/2 and PI3K/AKT1 Pathways. Placenta 2009;30:1045-51. [27] Lin C-M, Chiu J-H, Wu IH, Wang B-W, Pan C-M, Chen Y-H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1α. The Journal of Nutritional Biochemistry 2010;21:627-33. [28] Mittermayr R, Slezak P, Haffner N, Smolen D, Hartinger J, Hofmann A, et al. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta biomaterialia 2016;29:11-20. [29] Kanaki T, Bujo H, Mori S, Yanjuan Z, Takahashi K, Yokote K, et al. Functional analysis of aortic endothelial cells expressing mutant PDGF receptors with respect to expression of matrix metalloproteinase-3. Biochemical and Biophysical Research Communications 2002;294:231-7. [30] Yang H-L, Chang HC, Lin S-W, Senthil Kumar KJ, Liao C-H, Wang H-M, et al. Antrodia salmonea inhibits TNF-α-induced angiogenesis and atherogenesis in human endothelial cells through the down-regulation of NF-κB and up-regulation of Nrf2 signaling pathways. Journal of Ethnopharmacology 2014;151:394-406. [31] Yang H-L, Korivi M, Lin M-W, Chen S-C, Chou C-W, Hseu Y-C. Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochemical pharmacology 2015;98:144-56. [32] Wang L-S, Lee F, Lim J, Du C, Wan ACA, Lee SS, et al. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid–tyramine hydrogel system to promote the formation of functional vasculature. Acta biomaterialia 2014;10:2539-50. [33] Singh RK, Seliktar D, Putnam AJ. Capillary Morphogenesis in PEG-Collagen Hydrogels. Biomaterials 2013;34:9331-40. [34] Kang JH, Gimble JM, Kaplan DL. In Vitro 3D Model for Human Vascularized Adipose Tissue. Tissue engineering Part A 2009;15:2227-36. [35] Rao RR, Ceccarelli J, Vigen ML, Gudur M, Singh R, Deng CX, et al. Effects of hydroxyapatite on endothelial network formation in collagen/fibrin composite hydrogels in vitro and in vivo. Acta biomaterialia 2014;10:3091-7. [36] Lin R-Z, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 2012;15:443-55. [37] Lin RZ, Melero-Martin JM. Fibroblast growth factor-2 facilitates rapid anastomosis formation between bioengineered human vascular networks and living vasculature. Methods 2012;56:440-51. [38] Battiston KG, Cheung JWC, Jain D, Santerre JP. Biomaterials in co-culture systems: Towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014;35:4465-76. [39] Lin C-H, Lilly B. Endothelial Cells Direct Mesenchymal Stem Cells Toward a Smooth Muscle Cell Fate. Stem Cells and Development 2014;23:2581-90. [40] Sun X, Gao X, Zhou L, Sun L, Lu C. PDGF-BB-induced MT1-MMP expression regulates proliferation and invasion of mesenchymal stem cells in 3-dimensional collagen via MEK/ERK1/2 and PI3K/AKT signaling. Cellular Signalling 2013;25:1279-87. [41] Joo HJ, Seo H-R, Jeong HE, Choi S-C, Park JH, Yu CW, et al. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells. Biochemical and Biophysical Research Communications 2014;449:405-11. [42] Lee W-Y, Tsai H-W, Chiang J-H, Hwang S-M, Chen D-Y, Hsu L-W, et al. Core–shell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis. Biomaterials 2011;32:8446-55. [43] Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation research 2008;103:194-202. [44] Lin RZ, Moreno-Luna R, Li D, Jaminet SC, Greene AK, Melero-Martin JM. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proceedings of the National Academy of Sciences of the United States of America 2014;111:10137-42. [45] McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen–glycosaminoglycan scaffold in vivo. Acta biomaterialia 2013;9:9303-16. [46] Allen P, Melero-Martin J, Bischoff J. Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of tissue engineering and regenerative medicine 2011;5:e74-86. [47] Stosich MS, Moioli EK, Wu JK, Lee CH, Rohde C, Yoursef AM, et al. Bioengineering strategies to generate vascularized soft tissue grafts with sustained shape. Methods (San Diego, Calif) 2009;47:116-21. [48] Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. Journal of the Royal Society Interface 2007;4:413-37. [49] Liu J, Zheng H, Poh PSP, Machens H-G, Schilling AF. Hydrogels for Engineering of Perfusable Vascular Networks. International journal of molecular sciences 2015;16:15997-6016. [50] Lee F, Kurisawa M. Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta biomaterialia 2013;9:5143-52. [51] Zhang L-M, Wu C-X, Huang J-Y, Peng X-H, Chen P, Tang S-Q. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydrate polymers 2012;88:1445-52. [52] Fan C, Wang D-A. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. European Polymer Journal 2015;72:651-60. [53] Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, et al. Microfluidic Techniques for Development of 3D Vascularized Tissue. Biomaterials 2014;35:7308-25. [54] Kruger TE, Miller AH, Wang J. Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration. The Scientific World Journal 2013;2013:6. [55] Abraham LC, Zuena E, Perez-Ramirez B, Kaplan DL. Guide to collagen characterization for biomaterial studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008;87B:264-85. [56] El-Khalawany M, Fawzy S, Saied A, Al Said M, Amer A, Eassa B. Dermal filler complications: a clinicopathologic study with a spectrum of histologic reaction patterns. Annals of Diagnostic Pathology 2015;19:10-5. [57] Liu B, Xu Z, Yu R, Wang J, Wang Z, Harrell CR. The Use of Type I and Type III Injectable Human Collagen for Dermal Fill: 10 Years of Clinical Experience in China. Seminars in Plastic Surgery 2005;19:241-50. [58] Brongo S, Moccia LS, Nunziata V, D’Andrea F. Keratoacanthoma arising after site injection infection of cosmetic collagen filler. International journal of surgery case reports 2013;4:429-31. [59] Wiggins R, Goyal M, Merritt S, Killen PD. Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody-induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. Laboratory investigation; a journal of technical methods and pathology 1993;68:557-65. [60] Bornstein P, Nesse R. The comparative biochemistry of collagen: the structure of rabbit skin colllagen and its relevance to immunochemical studies of collagen. Archives of biochemistry and biophysics 1970;138:443-50. [61] Wu G, Sun S, Long X, Wang L, Ren S. Early stage minimally invasive procedures reduce perihematomal MMP-9 and blood-brain barrier disruption in a rabbit model of intracerebral hemorrhage. Neurological research 2013;35:649-58. [62] Tamilmozhi S, Veeruraj A, Arumugam M. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Research International 2013;54:1499-505. [63] Huang Y-R, Shiau C-Y, Chen H-H, Huang B-C. Isolation and characterization of acid and pepsin-solubilized collagens from the skin of balloon fish (Diodon holocanthus). Food Hydrocolloids 2011;25:1507-13. [64] Zhang J, Duan R, Huang L, Song Y, Regenstein JM. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye). Food chemistry 2014;150:22-6. [65] Veeruraj A, Arumugam M, Balasubramanian T. Isolation and characterization of thermostable collagen from the marine eel-fish (Evenchelys macrura). Process Biochemistry 2013;48:1592-602. [66] El-Rashidy AA, Gad A, Abu-Hussein AE-HG, Habib SI, Badr NA, Hashem AA. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. International journal of biological macromolecules 2015;79:618-26. [67] Tang L, Chen S, Su W, Weng W, Osako K, Tanaka M. Physicochemical properties and film-forming ability of fish skin collagen extracted from different freshwater species. Process Biochemistry 2015;50:148-55. [68] Huang C-Y, Kuo J-M, Wu S-J, Tsai H-T. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food chemistry 2016;190:997-1006. [69] Kuo K-C, Lin R-Z, Tien H-W, Wu P-Y, Li Y-C, Melero-Martin JM, et al. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta biomaterialia 2015;27:151-66. [70] Yang Y-l, Leone LM, Kaufman LJ. Elastic Moduli of Collagen Gels Can Be Predicted from Two-Dimensional Confocal Microscopy. Biophysical Journal 2009;97:2051-60. [71] Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 2010;31:8596-607. [72] Wang LS, Chung JE, Chan PP, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010;31:1148-57. [73] Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009;30:3371-7. [74] Li Z, Qu T, Ding C, Ma C, Sun H, Li S, et al. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta biomaterialia 2015;13:88-100. [75] Chuang C-H, Lin R-Z, Tien H-W, Chu Y-C, Li Y-C, Melero-Martin JM, et al. Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta biomaterialia 2015;19:85-99. [76] Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release 2009;134:186-93. [77] Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010;31:5536-44. [78] Chan BP, Chan OCM, So KF. Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta biomaterialia 2008;4:1627-36. [79] Ford MC, Bertram JP, Hynes SR, Michaud M, Li Q, Young M, et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America 2006;103:2512-7. [80] Critser PJ, Kreger ST, Voytik-Harbin SL, Yoder MC. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvascular Research 2010;80:23-30. [81] Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 2013;34:6785-96. [82] Chen YC, Lin RZ, Qi H, Yang Y, Bae H, Melero-Martin JM, et al. Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Advanced functional materials 2012;22:2027-39.
|