|
[1] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Mathematical and Computer Modelling, 54(2011), 2923–2927. [2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., (2012), 2012.40. [3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Appl., (2011), Article ID 508730, 10 pages, 2011. [4] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011), no. 2, pp. 1–12. [5] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topology and Applications, 159(2012), 3234–3242. [6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica- tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181. [7] Chi-Ming Chen, Erdal Karapinar,Fixed point results for the -Meir-Keeler contraction on partialHausdorff metric spaces, Journal of Inequalities and Applications 2013, 2013:410. [8] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction principle in partial metric spaces, Mathematical and Computer Modelling, 55(2012), 1673–1681. [9] R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, Topology and its Applications,160(2013),no:3, 450–454. [10] E. Karapinar, Weak -contraction on partial metric spaces, Journal of Computational Analysis and Applications, 16(6),(2012) vol. 14, no. 2, pp. 206–210. [11] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011. [12] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239–244. [13] S.G. Matthews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728 (1994) 183–197. [14] Meir, A, Keeler, E: A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329 [15] S. B. Nadler Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. [16] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid Math. Univ. Trieste, 36 (2004) 17–26. [17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for - -contractive type mappings, Nonlinear Analysis, 75 (2012) 2154–2165. [18] S. Reich, Fixed points of contractive functions, Boll Un Mat Ital., 75 (1972) 5(4):26–42. 22 |