帳號:guest(3.133.134.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭立成
論文名稱(中文):在偏豪斯多夫度量空間上滿足梅厄-基勒收縮函數之一些新定點理論
指導教授(中文):陳啟銘
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學號:10324207
出版年(民國):105
畢業學年度:104
語文別:中文
中文關鍵詞:偏度量豪斯多夫梅厄-基勒
外文關鍵詞:partial metricHausdorffMeir-Keeler
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本文的目的是研究定點定理與在偏豪斯多夫度量空間上滿足梅厄-基勒收縮函數。我們的研究結果推廣和改進了最近許多固定點定理在局部Hausdorff度量上。
The purpose of this paper is to study fixed point theorems for a multivalued mapping concerning with three classes of Meir-Keeler contractions with respect to the partial Hausdorff metric H in complete partial metric spaces.
Our results generalize and improve many recent fixed point
theorems for the partial Hausdorff metric in the literature.
P1~P7 介紹偏度量、多值與梅厄-基勒函數
P7~P14 主要定理
P15~P20 結論
P20~P22 參考文獻
[1] T. Abdeljawad, Fixed points for generalized weakly contractive mappings
in partial metric spaces, Mathematical and Computer Modelling, 54(2011),
2923–2927.
[2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic
generalized contractions in partial metric spaces, Fixed Point Theory and
Appl., (2012), 2012.40.
[3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on
partial metric spaces, Fixed Point Theory and Appl., (2011), Article ID
508730, 10 pages, 2011.
[4] H. Aydi, Fixed point results for weakly contractive mappings in ordered
partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011),
no. 2, pp. 1–12.
[5] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s
fixed point theorem on partial metric spaces, Topology and Applications,
159(2012), 3234–3242.
[6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica-
tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
[7] Chi-Ming Chen, Erdal Karapinar,Fixed point results for the -Meir-Keeler
contraction on partialHausdorff metric spaces, Journal of Inequalities and
Applications 2013, 2013:410.
[8] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction principle
in partial metric spaces, Mathematical and Computer Modelling, 55(2012),
1673–1681.
[9] R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed
point results, Topology and its Applications,160(2013),no:3, 450–454.
[10] E. Karapinar, Weak -contraction on partial metric spaces, Journal of
Computational Analysis and Applications, 16(6),(2012) vol. 14, no. 2, pp.
206–210.
[11] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric
spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011.
[12] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial
metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239–244.
[13] S.G. Matthews, Partial metric topology, Proc. 8th Summer of Conference
on General Topology and Applications, Ann. New York Aced. Sci., 728
(1994) 183–197.
[14] Meir, A, Keeler, E: A theorem on contraction mappings, J. Math. Anal.
Appl., 28 (1969), 326–329
[15] S. B. Nadler Multi-valued contraction mappings, Pacific J. Math., 30
(1969), 475–488.
[16] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
Rend. Istid Math. Univ. Trieste, 36 (2004) 17–26.
[17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for - -contractive
type mappings, Nonlinear Analysis, 75 (2012) 2154–2165.
[18] S. Reich, Fixed points of contractive functions, Boll Un Mat Ital., 75 (1972)
5(4):26–42.
22
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *