帳號:guest(3.144.243.147)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾冠維
作者(外文):Guan-Wei Zeng
論文名稱(中文):錐度量空間上函數的 Korovkin 型近似定理 之研究
論文名稱(外文):The study of Korovkin type approximation theorem for functions on cone metric space
指導教授(中文):陳正忠
指導教授(外文):Jeng-Chung Chen
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學號:10324204
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:25
中文關鍵詞:錐度量空間多值函數線性廣義錐度量空間
外文關鍵詞:Korovkin Type approximationmetric spacepartial metriccone metricgeneralized cone metricmulti-valuedpositiveHausdorff metric
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
本篇論文主要的目的是研究關於單值和多值函數的Korovkin 型近
似定理的結果。對於實數值單值函數的Korovkin 型近似定理,我們將
討論函數定義在錐度量空間和廣義錐度量空間兩種情形,而多值函數
的Korovkin 型近似定理,我們將討論從實數對映到實數中有界且封閉
集合的函數和從度量空間對映到實數中有界且封閉的集合兩種情
形。
The paper is concerned with the result of the Korovkin type
approximation theorem related to functions of single-valued and
multi-valued. For the study of Korovkin type approximation theorem of
single-valued, we discuss the functions define on the space of cone
metric and generalized cone metric. As for the Korovkin type
approximation theorem of multi-valued, we discuss the functions from
real number to closed and bounded sets of real number, the functions
from metric space to closed and bounded sets of real number and the
functions from partial metric space to closed and bounded sets of partial
metric space.
1. Introduction . . . . . . . . . . . . . . . . . 2
2. Main result . . . . . . . . . . . . . . . . . .4
3. References . . . . . . . . . . . . . . . . . . 19
[1] Acar, Tuncer, and Fadime Dirik. Korovkin-Type Theorems in Weighted LP -
Spaces via Summation Process. The Scientific World Journal, (2013).
[2] Al-Muhja, Malik Saad. A Korovkin type approximation theorem and Its applications.
Abstract and Applied Analysis. Vol. 2014. Hindawi Publishing Corporation,
(2014).
[3] Altomare, F. Korovkin-type theorems and approximation by positive linear
operators. Surveys in Approximation Theory,(2010).
[4] Aydi, Hassen, Mujahid Abbas, and Calogero Vetro. Partial Hausdorff metric
and Nadlers fixed point theorem on partial metric spaces. Topology and its
Applications 159.14 (2012): 3234-3242.
[5] Bardaro, Carlo, and et al. Korovkin-Type Theorems for Modular -AStatistical
Convergence. Journal of Function Spaces, (2015).
[6] Browder, Felix E. The fixed point theory of multi-valued mappings in topological
vector spaces. Mathematische Annalen 177.4 (1968): 283-301.
[7] Chen, C. M.,Karapınar, E. Fixed point results for the ±-Meir-Keeler contraction
on partial Hausdorff metric spaces. Journal of Inequalities and Ap-
plications,(2013).
[8] Demirci, Kamil, and Sevda Karaku¸s. Korovkin-type approximation theorem
for double sequences of positive linear operators via statistical A-summability.
Results in Mathematics 63.1-2 (2013): 1-13.
[9] Do˘gru, Og¨un. Approximation properties of a generalization of positive linear
operators. Journal of Mathematical Analysis and Applications 342.1 (2008):
161-170.
[10] Duman, Oktay. A-statistical convergence of sequences of convolution operators.
Taiwanese Journal of Mathematics 12.2 (2008): pp-523.
[11] Ergur, Alperen Ali, and Oktay Duman. Generalization of statistical Korovkin
theorems. Journal of Applied Mathematics, (2013).
[12] Finta, Zolt´an. Note on a Korovkin-type theorem. Journal of Mathematical
Analysis and Applications 415.2 (2014): 750-759.
[13] Huang, Long-Guang, and Xian Zhang. Cone metric spaces and fixed point
theorems of contractive mappings. Journal of mathematical Analysis and Ap-
plications 332.2 (2007): 1468-1476.
[14] Karakus, Sevda, and Kamil Demirci. Equi-statistical extension of the Korovkin
type approximation theorem. Turkish J. Math 33 (2009): 159-168.
[15] Karaku¸s, Sevda, and Kamil Demirci. A-summation process and Korovkintype
approximation theorem for double sequences of positive linear operators.
Mathematica Slovaca 62.2 (2012): 281-292.
[16] Keimel, Klaus, and Walter Roth. A Korovkin type approximation theorem
for set-valued functions. Proceedings of the American Mathematical Society
104.3 (1988).
[17] P.P.Korovkin: Liner Operators and Approximation Therom Translated from
the Russian Edition,(1959)
[18] Mizoguchi, Noriko, andWataru Takahashi. Fixed point theorems for multivalued
mappings on complete metric spaces. Journal of Mathematical Analysis
and Applications 141.1 (1989): 177-188.
[19] Mursaleen, M., and Adem Kilicman. Korovkin Second Theorem via BStatistical
A-Summability. Abstract and Applied Analysis. Vol. 2013. Hindawi
Publishing Corporation, (2013).
[20] Mursaleen, Mohammad, and Abdullah Alotaibi. Korovkin type approximation
theorem for functions of two variables through statistical A-summability.
Advances in Difference Equations 2012.1 (2012): 1-10.
[21] Mustafa, Zead, and Brailey Sims. A new approach to generalized metric
spaces. Journal of Nonlinear and convex Analysis 7.2 (2006): 289-297.
[22] Orhan, Sevda, and Kamil Demirci. Statistical A-summation process and Korovkin
type approximation theorem on modular spaces. Positivity 18.4 (2014):
669-686.
[23] Rezapour, Sh, and R. Hamlbarani. Some notes on the paper “Cone metric
spaces and fixed point theorems of contractive mappings”. Journal of Math-
ematical Analysis and Applications 345.2 (2008): 719-724.
[24] Uygun, Nihan. On the Korovkin approximation theorem and Volkov-type
theorems. Journal of Inequalities and Applications 2014.1 (2014): 1-5.
[25] Wardowski, Dariusz. On set-valued contractions of Nadler type in cone metric
spaces. Applied Mathematics Letters 24.3 (2011): 275-278.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *