帳號:guest(3.145.161.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):田漢文
作者(外文):Han-wen Tien
論文名稱(中文):超奈米鑽石薄膜作為植入式微晶片披覆層的探討
指導教授(中文):陳盈潔老師
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10225054
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:鑽石薄膜超奈米鑽石薄膜微晶片
外文關鍵詞:DiamondMicrochip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
植入式生物傳感器(包括人工耳蝸、心臟起搏器…等等)對生物本體來說屬於外來物質,而植入過程與植入後無法避免一些併發症的產生(例如腫瘤形成、感染等等病症)以及植入式材料與宿主間相互作用(蛋白質的貼附、急性/慢性炎症反應、異物反應與纖維化組織包覆),進而影響了植入物元件的功用及效能。本實驗以超奈米鑽石薄膜(UNCD)作為植入式微晶片的披覆層以改善/降低植入式材料與宿主間相互作用。我們以Si晶元模擬微晶片基板,經5 % HF前處理以及利用超聲波振盪方式在Si微晶片表面製造刮痕以利鑽石晶種的孕核,利用微波電漿增強化學氣相沉積法 ( Micro Plasma Enhanced Chemical Vapor Deposition ( MPECVD ) ) 方式在( 1 % H2 ) : Ar/CH4環境下成長UNCD薄膜,在電化學表現方面以循環伏安法( CV )給予低電壓( -1至0.5 V )與高電壓( -5至5 V)檢測披覆UNCD薄膜的Si微晶片的漏電流,可得到低的漏電流值1.56x10-6 A/cm2及5.27x10-5 A/cm2並針對不同厚度的UNCD鑽石薄膜與漏電流值的關係,發現隨著UNCD薄膜厚度從0.317 μm增加至1.53 μm ,其漏電流值會遞減,分別從1.56x10-6 A/cm2降至8.07x10-7 A/cm2 及5.27x10-5降至2.31x10-5 A/cm2,此外還探討材料的特性影響了炎症反應或纖維化組織厚度的影響,因此我們以不同材料(Ti、Si、H/O-UNCD、H/O-Graphite及臨床使用的Ti-6Al-4V)植入在5-7周大BALB/cByJNarl小白鼠皮下植入1、3、6個月,觀察植入所引發的纖維化組織厚度,並比較了碳材料表面形貌、親/疏水性對纖維蛋白原( Fibrinogen )的吸附、單核細胞趨化蛋白( Monocyte Chemoattractant Protein-1 ( MCP-1) ) 、腫瘤壞死因子-α ( Tumor necrosis factor - alpha ( TNF-α ) )、免疫淋巴細胞分泌的 ( Interleukin – 4 ( IL-4) 與引發的纖維化組織厚度,統計結果得知材料表面越平坦,表面積越小,材料表面水的吸附能越低,Fibrinogen吸附的量越少,同時也能抑制急性炎症反應中MPC-1與TNF-α,因此在短期( 1 M )與長期( 3 M )免疫反應會形成較薄的纖維化組織厚度,而對於MCP-1越少而言,能抑制TNF-α的量,進而在長期免疫反應中會形成較厚的纖維化組織厚度。
Implantable biosensors (including cochlear implants, pacemakers ... etc.) are belongs to foreign substances to human bodies, so it cannot avoid some of the complications with the implant during or after implantation process (such as a tumor, infection, etc. illness). The immune reactions beween inter-implantable materials and host (protein attachment, acute/chronic inflammatory reaction, foreign body reaction and fibrosis coated), always affects the function of the implant components and performance. In this study, using ultra-nanocrystalline diamond thin film (UNCD) as implantable microchip encasulation layer to improve / reduce the interactions betwwen inter-implanted material and host tissue. Using microwave plasma enhanced chemical vapor deposition (MPECVD) under Ar-rich (99%)/CH4 (1%) plasma to grow double-sdied coated UNCD film on 5% HF pretreated Si microchips. The electrochemical performance with cyclic voltammetry (CV) by applying low-voltage (-1 to 0.5 V) and high voltage (-5 to 5 V) to detecte leakage current density of Si microchips coated with UNCD films. With the increasing of UNCD film thickness increases from 0.317 μm to 1.53 μm, which the leakage current value is decremented, that reduced from 1.56x10-6 A / cm2 to 8.07x10-7 A / cm2 at -1V and 5.27x10-5 to 2.31x10-5 A / cm2 at 5V. Then, we also investigate the influence of the inflammatory response or fibrotic tissue thickness with the properties of material, so we use different materials (Ti, Si, H / O-UNCD, H / O-Graphite and clinical use of Ti-6Al-4V) to implant subcutaneously into the 5-7-week-old BALB/cByJNarl mice for 1,3 and 6 months to observe thickness of fibrotic tissue formation. In comaprision with surface morphology and wettability of materials, absorbed proteins observed on materials, and monocyte chemoattractant protein (Monocyte Chemoattractant Protein-1 (MCP-1)), tumor necrosis factor -α (Tumor necrosis factor - alpha (TNF-α)) and Interleukin-4 (IL-4) secreted by immune cells, and fibrotic tissue thickness induced by different materails, statistical results show that the smmother surface, the smaller surface area. Less water wettability results less absorbed fibrinogen adsorption, which further not only decreased the acute inflammatory response in MCP-1 and TNF-α, but also caused thinner fibrous tissue.
摘要 1
ABSTRATE 3
表目錄 9
第一章、緒論 10
1-1 植入式傳感器 10
1-1-1 植入式傳感器的應用 10
1-2 異物反應 (Foreign body response) 15
1-2-1傷口-植入物表面相互作用 16
1-2-2急性炎症反應(Acute inflammation) 19
1-2-3 慢性炎症( Chronic inflammation ) 20
1-2-4巨噬細胞/異物巨細胞 ( Macrophage/FBGC) 22
1-2-5纖維化/纖維包覆 (Fibrosis/Fibrous Encapsulation) 23
1-3克服目前植入式瓶頸 25
1-4鑽石薄膜特性&應用 29
第二章、材料與實驗方法 32
2-1實驗目的與設計 32
2-2 Si微晶片前處理 34
2-3鑽石薄膜成核成長 35
2-4 材料特性鑑定 36
材料生物相容性探討 39
第三章、結果與討論 41
披覆UNCD的Si微晶片包覆性、穩定性及生物相容性的探討 41
3-1 Si微晶片前處理對披覆UNCD的Si微晶片漏電流的影響 41
3-2披覆不同UNCD薄膜厚度的Si微晶片對漏電流與纖維化組織厚度的影響 42
3-3 UNCD薄膜厚度對纖維化組織的影響與植入後薄膜穩定性的探討 45
3-4 碳材料表面親/疏水性與表面形貌對炎症反應及纖維化組織的影響 49
3-5 材料特性、炎症反應、纖維化組織厚度相互關係 57
第4章、討論 60
4-1 Si 微晶片表面前處理對披覆UNCD的Si微晶片漏電流的影響 60
4-2披覆不同厚度UNCD薄膜對纖維化組織與植入穩定性的探討 60
4-3 碳材料表面親/疏水性與表面形貌對炎症反應及纖維化組織厚度的影響 61
第五章 結論 63
補充 64
[1] Clark LC. Guest Editorial. Biosensors and Bioelectronics. 1993;8:iii-vii.
[2] Zhang JXJ, Hoshino K. Implantable Sensors. 2014:415-65.
[3] Qin Y, Howlader MMR, Deen MJ, Haddara YM, Selvaganapathy PR. Polymer integration for packaging of implantable sensors. Sensors and Actuators B: Chemical. 2014;202:758-78.
[4] Su L, Jia W, Hou C, Lei Y. Microbial biosensors: a review. Biosensors & bioelectronics. 2011;26:1788-99.
[5] Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosensors & bioelectronics. 2010;25:1553-65.
[6] Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosensors & bioelectronics. 2005;20:2388-403.
[7] Fekete Z. Recent advances in silicon-based neural microelectrodes and microsystems: a review. Sensors and Actuators B: Chemical. 2015;215:300-15.
[8] Hunter Peckham P, Michael Ackermann D. Chapter 18 - Implantable Neural Stimulators. In: Rezai ESKHPR, editor. Neuromodulation. San Diego: Academic Press; 2009. p. 215-28.
[9] Vasylieva N, Marinesco S, Barbier D, Sabac A. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. Biosensors & bioelectronics. 2015;72:148-55.
[10] Grabiec P, Domanski K, Szmigiel D, Hodgins D. Electrode array design and fabrication for implantable systems. 2013:150-82.
[11] Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. Journal of neuroscience methods. 2005;148:1-18.
[12] Neves HP. Materials for implantable systems. 2013:3-38.
[13] Ivanova EP, Bazaka K, Crawford RJ. Introduction to biomaterials and implantable device design. 2014:1-31.
[14] Vale FL, Pollock G, Dionisio J, Benbadis SR, Tatum WO. Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clinical neurology and neurosurgery. 2013;115:985-90.
[15] Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM, Dimitrov DF, et al. Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates. PLoS Biology. 2003;1:e42.
[16] .
[17] Weinreich HM, Francis HW, Niparko JK, Chien WW. Techniques in cochlear implantation. Operative Techniques in Otolaryngology-Head and Neck Surgery. 2014;25:312-20.
[18] .
[19] Humayun MS, Lakhanpal RR, Weiland JD. Chapter 154 - Artificial Vision. In: Wilkinson SJRRHPSP, editor. Retina (Fourth Edition). Edinburgh: Mosby; 2006. p. 2615-32.
[20] Li P-Y, Shih J, Lo R, Saati S, Agrawal R, Humayun MS, et al. An electrochemical intraocular drug delivery device. Sensors and Actuators A: Physical. 2008;143:41-8.
[21] Baura GD. Cochlear Implants. 2012:315-34.
[22] Tan F, Walshe P, Viani L, Al-Rubeai M. Surface biotechnology for refining cochlear implants. Trends in Biotechnology. 2013;31:678-87.
[23] Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hearing research. 2008;242:3-21.
[24] Žák J, Hadaš Z, Dušek D, Pekárek J, Svatoš V, Janák L, et al. Model-based design of artificial zero power cochlear implant. Mechatronics. 2015.
[25] .
[26] Chouard CH, Fugain C, Meyer B, Lacombe H. LONG-TERM RESULTS OF THE MULTICHANNEL COCHLEAR IMPLANTa. Annals of the New York Academy of Sciences. 1983;405:387-411.
[27] Kim C-S, Chang SO, Oh S-H, Lee HJ. Complications in cochlear implantation. International Congress Series. 2004;1273:145-8.
[28] Kubo T, Matsuura S, Iwaki T. Complications of cochlear implant surgery. Operative Techniques in Otolaryngology-Head and Neck Surgery. 2005;16:154-8.
[29] Qiu J, Chen Y, Tan P, Chen J, Han Y, Gao L, et al. Complications and clinical analysis of 416 consecutive cochlear implantations. International journal of pediatric otorhinolaryngology. 2011;75:1143-6.
[30] Rebscher SJ. Considerations for design of future cochlear implant electrode arrays: Electrode array stiffness, size. The Journal of Rehabilitation Research and Development. 2008;45:731-48.
[31] Eter EG, Balkany TJ. Pediatric cochlear implant surgery. Operative Techniques in Otolaryngology-Head and Neck Surgery. 2009;20:202-5.
[32] Benatti A, Castiglione A, Trevisi P, Bovo R, Rosignoli M, Manara R, et al. Endocochlear inflammation in cochlear implant users: case report and literature review. International journal of pediatric otorhinolaryngology. 2013;77:885-93.
[33] Petrie JP. Permanent transvenous cardiac pacing. Clinical techniques in small animal practice. 2005;20:164-72.
[34] .
[35] Khan MG. Chapter 76 - Pacemakers. In: Khan MG, editor. Encyclopedia of Heart Diseases. Burlington: Academic Press; 2006. p. 525-32.
[36] Wells CL. Chapter 45 - Cardiac pacemakers and defibrillators. In: Moran TLKOB, editor. Geriatric Rehabilitation Manual (Second Edition). Edinburgh: Churchill Livingstone; 2007. p. 281-5.
[37] Brown DW, Croft JB, Giles WH, Anda RF, Mensah GA. Epidemiology of pacemaker procedures among Medicare enrollees in 1990, 1995, and 2000. The American journal of cardiology. 2005;95:409-11.
[38] Greenspon AJ, Patel JD, Lau E, Ochoa JA, Frisch DR, Ho RT, et al. 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. Journal of the American College of Cardiology. 2011;58:1001-6.
[39] Greenspon AJ, Patel JD, Lau E, Ochoa JA, Frisch DR, Ho RT, et al. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. Journal of the American College of Cardiology. 2012;60:1540-5.
[40] Uslan DZ, Tleyjeh IM, Baddour LM, Friedman PA, Jenkins SM, St Sauver JL, et al. Temporal trends in permanent pacemaker implantation: a population-based study. American heart journal. 2008;155:896-903.
[41] LeBlanc N, Scollan K, Sisson D. Transvenous extraction of an abandoned endocardial pacemaker lead in a dog. Journal of veterinary cardiology : the official journal of the European Society of Veterinary Cardiology. 2014;16:51-7.
[42] Sarko JA, Tiffany BR. Cardiac pacemakers: evaluation and management of malfunctions. The American journal of emergency medicine. 2000;18:435-40.
[43] .
[44] Alandete German SP, Isarria Vidal S, Domingo Montanana ML, De la Via Oraa E, Vilar Samper J. Pacemakers and implantable cardioverter defibrillators, unknown to chest radiography: review, complications and systematic reading. European journal of radiology. 2015;84:499-508.
[45] Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, et al. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision research. 2003;43:2573-81.
[46] Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, et al. Retinal Prosthesis for the Blind. Survey of Ophthalmology. 2002;47:335-56.
[47] Narayanan Nadig M. Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity. Clinical Neurophysiology. 1999;110:1545-53.
[48] Humayun MS, Fernandes RAB, Weiland JD. Artificial Vision. 2013:2078-93.
[49] Hornig R, Velikay-Parel M. Retina implants. 2013:469-96.
[50] Picaud S, Sahel JA. Retinal prostheses: clinical results and future challenges. Comptes rendus biologies. 2014;337:214-22.
[51] Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal Visual Implant Alpha IMS - Clinical trial interim report. Vision research. 2015;111:149-60.
[52] Eckhorn R, Wilms M, Schanze T, Eger M, Hesse L, Eysel UT, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vision research. 2006;46:2675-90.
[53] Sim SL, Szalewski RJ, Johnson LJ, Akah LE, Shoemaker LE, Thoreson WB, et al. Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation. Vision research. 2014;101:41-50.
[54] Nguyen NT, Shaegh SA, Kashaninejad N, Phan DT. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Advanced drug delivery reviews. 2013;65:1403-19.
[55] Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society. 2014;181:1-10.
[56] Dash A, Cudworth Ii G. Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods. 1998;40:1-12.
[57] Hilt JZ, Peppas NA. Microfabricated drug delivery devices. International journal of pharmaceutics. 2005;306:15-23.
[58] Maloney JM, Uhland SA, Polito BF, Sheppard NF, Jr., Pelta CM, Santini JT, Jr. Electrothermally activated microchips for implantable drug delivery and biosensing. Journal of controlled release : official journal of the Controlled Release Society. 2005;109:244-55.
[59] Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society. 2014;190:15-28.
[60] Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. Journal of controlled release : official journal of the Controlled Release Society. 2014;196:208-21.
[61] Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O'Leary S, et al. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. Journal of controlled release : official journal of the Controlled Release Society. 2006;116:285-94.
[62] Kim GY, Tyler BM, Tupper MM, Karp JM, Langer RS, Brem H, et al. Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. Journal of controlled release : official journal of the Controlled Release Society. 2007;123:172-8.
[63] Wildemeersch D, Schacht E, Wildemeersch P. Performance and acceptability of intrauterine release of levonorgestrel with a miniature delivery system for hormonal substitution therapy, contraception and treatment in peri and postmenopausal women. Maturitas. 2003;44:237-45.
[64] Meckstroth KR, Darney PD. IMPLANTABLE CONTRACEPTION. Obstetrics and Gynecology Clinics of North America. 2000;27:781-815.
[65] Farra R, Sheppard NF, McCabe L, Neer RM, Anderson JM, Santini JT, et al. First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip. Science Translational Medicine. 2012;4:122ra21-ra21.
[66] Anderson JM. Inflammation, Wound Healing, and the Foreign-Body Response. 2013:503-12.
[67] Schoen FJ. Chapter II.2.1 - Introduction: “Biological Responses to Biomaterials”. In: Lemons BDRSHJSE, editor. Biomaterials Science (Third Edition): Academic Press; 2013. p. 499-503.
[68] Xu LC, Bauer JW, Siedlecki CA. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids and surfaces B, Biointerfaces. 2014;124:49-68.
[69] Anderson JM. Chapter II.2.2 - Inflammation, Wound Healing, and the Foreign-Body Response. In: Lemons BDRSHJSE, editor. Biomaterials Science (Third Edition): Academic Press; 2013. p. 503-12.
[70] Gifford R, Kehoe JJ, Barnes SL, Kornilayev BA, Alterman MA, Wilson GS. Protein interactions with subcutaneously implanted biosensors. Biomaterials. 2006;27:2587-98.
[71] Mitchell RN. Chapter II.2.3 - Innate and Adaptive Immunity: The Immune Response to Foreign Materials. In: Lemons BDRSHJSE, editor. Biomaterials Science (Third Edition): Academic Press; 2013. p. 512-33.
[72] Dimarakis I, Rehman SM, Asimakopoulos G. 1 - Tissue responses to implanted materials. In: Black TGA, editor. Biomaterials and Devices for the Circulatory System: Woodhead Publishing; 2010. p. 3-23.
[73] Stieglitz T, Schuettler M. 2 - Material–tissue interfaces in implantable systems. In: Inmann A, Hodgins D, editors. Implantable Sensor Systems for Medical Applications: Woodhead Publishing; 2013. p. 39-67.
[74] Tang L, Eaton JW. Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Molecular Medicine. 1999;5:351-8.
[75] Curran JM, Hunt JA. Leukocyte–Biomaterial Interaction In Vitro. 2011:49-62.
[76] Luong-Van E, Rodriguez I, Low HY, Elmouelhi N, Lowenhaupt B, Natarajan S, et al. Review: Micro- and nanostructured surface engineering for biomedical applications. Journal of Materials Research. 2013;28:165-74.
[77] Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241-51.
[78] Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir. 2006;22:10885-8.
[79] Cha P, Krishnan A, Fiore VF, Vogler EA. Interfacial Energetics of Protein Adsorption from Aqueous Buffer to Surfaces with Varying Hydrophilicity. Langmuir. 2008;24:2553-63.
[80] Vogler EA, Martin DA, Montgomery DB, Graper J, Sugg HW. A graphical method for predicting surfactant and protein adsorption properties. Langmuir. 1993;9:497-507.
[81] Vogler EA. Protein adsorption in three dimensions. Biomaterials. 2012;33:1201-37.
[82] Vogler EA. Thermodynamics of short-term cell adhesion in vitro. Biophysical Journal. 1988;53:759-69.
[83] Vogler EA. Water and the acute biological response to surfaces. Journal of Biomaterials Science, Polymer Edition. 1999;10:1015-45.
[84] Parhi P, Golas A, Barnthip N, Noh H, Vogler EA. Volumetric interpretation of protein adsorption: Capacity scaling with adsorbate molecular weight and adsorbent surface energy. Biomaterials. 2009;30:6814-24.
[85] Parhi P, Golas A, Vogler EA. Role of Proteins and Water in the Initial Attachment of Mammalian Cells to Biomedical Surfaces: A Review. Journal of Adhesion Science and Technology. 2010;24:853-88.
[86] Holmes C, Tabrizian M. Chapter 14 - Surface Functionalization of Biomaterials. In: Ramalingam AVSS, editor. Stem Cell Biology and Tissue Engineering in Dental Sciences. Boston: Academic Press; 2015. p. 187-206.
[87] Noh H, Vogler EA. Volumetric interpretation of protein adsorption: Mass and energy balance for albumin adsorption to particulate adsorbents with incrementally increasing hydrophilicity. Biomaterials. 2006;27:5801-12.
[88] Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Advances in colloid and interface science. 2011;162:87-106.
[89] Sethuraman A, Han M, Kane RS, Belfort G. Effect of Surface Wettability on the Adhesion of Proteins. Langmuir. 2004;20:7779-88.
[90] Wang Y-X, Robertson J, Spillman W, Jr., Claus R. Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility. Pharm Res. 2004;21:1362-73.
[91] Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S. Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers. 2007;68:44-53.
[92] Kew RR. The Complement System. In: Mitchell LMMN, editor. Pathobiology of Human Disease. San Diego: Academic Press; 2014. p. 231-43.
[93] Carroll MV, Sim RB. Complement in health and disease. Advanced drug delivery reviews. 2011;63:965-75.
[94] Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681-703.
[95] Vroman L, Adams AL. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surface Science. 1969;16:438-46.
[96] Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids and Surfaces B: Biointerfaces. 2013;103:395-404.
[97] Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692-709.
[98] Corum LE, Hlady V. The effect of upstream platelet–fibrinogen interactions on downstream adhesion and activation. Biomaterials. 2012;33:1255-60.
[99] Anderson JM. Chapter 4 Mechanisms of inflammation and infection with implanted devices. Cardiovascular Pathology. 1993;2:33-41.
[100] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in immunology. 2008;20:86-100.
[101] Gad SC. Foreign Body Response. 2014:645-6.
[102] Brown BN, Badylak SF. Chapter 25 - The Role of the Host Immune Response in Tissue Engineering and Regenerative Medicine. In: Vacanti RLL, editor. Principles of Tissue Engineering (Fourth Edition). Boston: Academic Press; 2014. p. 497-509.
[103] Anderson JM. Biocompatibility and the Relationship to Standards: Meaning and Scope of Biomaterials Testing. 2011:7-26.
[104] Brown BN, Badylak SF. Chapter 11 - Biocompatibility and Immune Response to Biomaterials. In: Stratta GOLSJ, editor. Regenerative Medicine Applications in Organ Transplantation. Boston: Academic Press; 2014. p. 151-62.
[105] Zdolsek J, Eaton JW, Tang L. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. Journal of translational medicine. 2007;5:31.
[106] Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:8841-6.
[107] Love RJ, Jones KS. 4.404 - Adaptive Immune Responses to Biomaterials. In: Ducheyne P, editor. Comprehensive Biomaterials. Oxford: Elsevier; 2011. p. 37-47.
[108] Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced Macrophage Activation and Signal Transduction in the Absence of Src-Family Kinases Hck, Fgr, and Lyn. The Journal of Experimental Medicine. 1997;185:1661-70.
[109] Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology. 2009;214:630-41.
[110] .
[111] Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta biomaterialia. 2013;9:4948-55.
[112] .
[113] Zaveri TD, Lewis JS, Dolgova NV, Clare-Salzler MJ, Keselowsky BG. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials. 2014;35:3504-15.
[114] Skokos EA, Charokopos A, Khan K, Wanjala J, Kyriakides TR. Lack of TNF-alpha-induced MMP-9 production and abnormal E-cadherin redistribution associated with compromised fusion in MCP-1-null macrophages. The American journal of pathology. 2011;178:2311-21.
[115] .
[116] Panilaitis B, Altman GH, Chen J, Jin H-J, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials. 2003;24:3079-85.
[117] Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta biomaterialia. 2013;9:4948-55.
[118] Horbett TA. Adsorbed Proteins on Biomaterials. 2013:394-408.
[119] Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proceedings of the National Academy of Sciences. 1998;95:8841-6.
[120] Fibrin(ogen) mediates acute inflammatory responses to biomaterials. The Journal of Experimental Medicine. 1993;178:2147-56.
[121] Kao WJ, McNally AK, Hiltner A, Anderson JM. Role for interleukin-4 in foreign-body giant cell formation on a poly(etherurethane urea) in vivo. Journal of Biomedical Materials Research. 1995;29:1267-75.
[122] Brown BN, Badylak SF. The Role of the Host Immune Response in Tissue Engineering and Regenerative Medicine. 2014:497-509.
[123] Brodbeck WG, Anderson JM. GIANT CELL FORMATION AND FUNCTION. Current opinion in hematology. 2009;16:53-7.
[124] Kyriakides TR, Foster MJ, Keeney GE, Tsai A, Giachelli CM, Clark-Lewis I, et al. The CC Chemokine Ligand, CCL2/MCP1, Participates in Macrophage Fusion and Foreign Body Giant Cell Formation. The American journal of pathology.165:2157-66.
[125] Keselowsky BG, Bridges AW, Burns KL, Tate CC, Babensee JE, LaPlaca MC, et al. Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials. 2007;28:3626-31.
[126] McNally AK, Jones JA, MacEwan SR, Colton E, Anderson JM. Vitronectin is A Critical Protein Adhesion Substrate for IL-4-INDUCED Foreign Body Giant Cell Formation. Journal of biomedical materials research Part A. 2008;86:535-43.
[127] Kenneth Ward W. A Review of the Foreign-body Response to Subcutaneously-implanted Devices: The Role of Macrophages and Cytokines in Biofouling and Fibrosis. Journal of diabetes science and technology (Online). 2008;2:768-77.
[128] Lim HJ, Lee E-S, Park HY, Park K, Choung Y-H. Foreign body reaction after cochlear implantation. International journal of pediatric otorhinolaryngology. 2011;75:1455-8.
[129] Ratner BD, Hoffman AS. Chapter I.2.10 - Non-Fouling Surfaces. In: Lemons BDRSHJSE, editor. Biomaterials Science (Third Edition): Academic Press; 2013. p. 241-7.
[130] Wisniewski N, Reichert M. Methods for reducing biosensor membrane biofouling. Colloids and Surfaces B: Biointerfaces. 2000;18:197-219.
[131] Coletti C, Jaroszeski MJ, Hoff AM, Saddow SE. Chapter 4 - SiC In Vitro Biocompatibility: Epidermal and Connective Tissue Cells. In: Saddow SE, editor. Silicon Carbide Biotechnology. Oxford: Elsevier; 2012. p. 119-52.
[132] Frewin CL, Locke C, Saddow SE, Weeber EJ. Chapter 6 - Biocompatibility of SiC for Neurological Applications. In: Saddow SE, editor. Silicon Carbide Biotechnology. Oxford: Elsevier; 2012. p. 209-56.
[133] Díaz-Rodríguez P, Landin M. Controlled release of indomethacin from alginate–poloxamer–silicon carbide composites decrease in-vitro inflammation. International journal of pharmaceutics. 2015;480:92-100.
[134] Wang Y, Papadimitrakopoulos F, Burgess DJ. Polymeric "smart" coatings to prevent foreign body response to implantable biosensors. Journal of controlled release : official journal of the Controlled Release Society. 2013;169:341-7.
[135] Yu B, Wang C, Ju YM, West L, Harmon J, Moussy Y, et al. Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosensors and Bioelectronics. 2008;23:1278-84.
[136] Gerritsen M, Kros A, Sprakel V, Lutterman JA, Nolte RJM, Jansen JA. Biocompatibility evaluation of sol–gel coatings for subcutaneously implantable glucose sensors. Biomaterials. 2000;21:71-8.
[137] Hetrick EM, Prichard HL, Klitzman B, Schoenfisch MH. Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials. 2007;28:4571-80.
[138] Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials. 2014;35:8585-95.
[139] Wooley PH, Morren R, Andary J, Sud S, Yang S-Y, Mayton L, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23:517-26.
[140] Nordsletten L, Høgåsen AKM, Konttinen Y, Santavirta S, Aspenberg P, Aasen AO. Human monocytes stimulation by particles of hydroxyapatite, silicon carbide and diamond: in vitro studies of new prosthesis coatings. Biomaterials. 1996;17:1521-7.
[141] Qu C, Wang L, He J, Tan J, Liu W, Zhang S, et al. Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1β and IL-6. Gene. 2012;493:9-12.
[142] Mohanty M, Anilkumar TV, Mohanan PV, Muraleedharan CV, Bhuvaneshwar GS, Derangere F, et al. Long term tissue response to titanium coated with diamond like carbon. Biomolecular Engineering. 2002;19:125-8.
[143] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941-53.
[144] .
[145] Qiao Y, Liu X. 4.17 - Biocompatible Coating. In: Yilbas SHFBJVT, editor. Comprehensive Materials Processing. Oxford: Elsevier; 2014. p. 425-47.
[146] Amaral M, Maru MM, Rodrigues SP, Gouvêa CP, Trommer RM, Oliveira FJ, et al. Extremely low wear rates in hip joint bearings coated with nanocrystalline diamond. Tribology International. 2015;89:72-7.
[147] .
[148] Nistor PA, May PW, Tamagnini F, Randall AD, Caldwell MA. Long-term culture of pluripotent stem-cell-derived human neurons on diamond – A substrate for neurodegeneration research and therapy. Biomaterials. 2015;61:139-49.
[149] Grausova L, Bacakova L, Kromka A, Vanecek M, Rezek B, Lisa V. Molecular markers of adhesion, maturation and immune activation of human osteoblast-like MG 63 cells on nanocrystalline diamond films. Diamond and Related Materials. 2009;18:258-63.
[150] Grausova L, Kromka A, Bacakova L, Potocky S, Vanecek M, Lisa V. Bone and vascular endothelial cells in cultures on nanocrystalline diamond films. Diamond and Related Materials. 2008;17:1405-9.
[151] Narayan RJ, Boehm RD, Sumant AV. Medical applications of diamond particles & surfaces. Materials Today. 2011;14:154-63.
[152] Auciello O, Gurman P, Berra A, Saravia M, Zysler R. 6 - Ultrananocrystalline diamond (UNCD) films for ophthalmological applications. In: Narayan R, editor. Diamond-Based Materials for Biomedical Applications: Woodhead Publishing; 2013. p. 151-70.
[153] Hadjinicolaou AE, Leung RT, Garrett DJ, Ganesan K, Fox K, Nayagam DAX, et al. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials. 2012;33:5812-20.
[154] Wang J, Zhou J, Long HY, Xie YN, Zhang XW, Luo H, et al. Tribological, anti-corrosive properties and biocompatibility of the micro- and nano-crystalline diamond coated Ti6Al4V. Surface and Coatings Technology. 2014;258:1032-8.
[155] Tang L, Tsai C, Gerberich WW, Kruckeberg L, Kania DR. Biocompatibility of chemical-vapour-deposited diamond. Biomaterials. 1995;16:483-8.
[156] Chen Y-C, Tsai C-Y, Lee C-Y, Lin IN. In vitro and in vivo evaluation of ultrananocrystalline diamond as an encapsulation layer for implantable microchips. Acta biomaterialia. 2014;10:2187-99.
[157] Chen H-C, Wang C-S, Lin IN, Cheng H-F. Defect structure for the ultra-nanocrystalline diamond films synthesized in H2-containing Ar/CH4 plasma. Diamond and Related Materials. 2011;20:368-73.
[158] Lee ST, Lin Z, Jiang X. CVD diamond films: nucleation and growth. Materials Science and Engineering: R: Reports. 1999;25:123-54.
[159] Miyake M, Ogino A, Nagatsu M. Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma. Thin Solid Films. 2007;515:4258-61.
[160] Zou YS, Li ZX, Wu YF. Deposition and characterization of smooth ultra-nanocrystalline diamond film in CH4/H2/Ar by microwave plasma chemical vapor deposition. Vacuum. 2010;84:1347-52.
[161] Chen H-C, Jothiramalingam Sankaran K, Lo S-C, Lin L-J, Tai N-H, Lee C-Y, et al. Using an Au interlayer to enhance electron field emission properties of ultrananocrystalline diamond films. Journal of Applied Physics. 2012;112:103711.
[162] Skiff WM, Carpenter RW, Lin SH. Near‐edge fine‐structure analysis of core‐shell electronic absorption edges in silicon and its refractory compounds with the use of electron‐energy‐loss microspectroscopy. Journal of Applied Physics. 1987;62:2439-49.
[163] Hirose F, Nagato M, Kinoshita Y, Nagase S, Narita Y, Suemitsu M. Initial oxidation of HF-acid treated Si(1 0 0) surfaces under air exposure studied by synchrotron radiation X-ray photoelectron spectroscopy. Surface Science. 2007;601:2302-6.
[164] Palermo V, Jones D. Morphological changes of the Si [1 0 0] surface after treatment with concentrated and diluted HF. Materials Science in Semiconductor Processing. 2001;4:437-41.
[165] Schelz S, Borges CFM, Martinu L, Moisan M. Diamond nucleation enhancement by hydrofluoric acid etching of silicon substrate. Diamond and Related Materials. 1997;6:440-3.
[166] Shen M-R, Wang H, Ning Z-Y, Ye C, Gan Z-Q, Ren Z-X. Enhanced diamond nucleation on pretreated silicon substrates. Thin Solid Films. 1997;301:77-81.
[167] Xiao X, Wang J, Liu C, Carlisle JA, Mech B, Greenberg R, et al. In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2006;77B:273-81.
[168] Kim JH, Lee SK, Kwon OM, Hong SI, Lim DS. Thickness controlled and smooth polycrystalline CVD diamond film deposition on SiO2 with electrostatic self assembly seeding process. Diamond and Related Materials. 2009;18:1218-22.
[169] Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN. Engineering biomaterials surfaces to modulate the host response. Colloids and Surfaces B: Biointerfaces. 2014;124:69-79.
[170] Shi B, Jin Q, Chen L, Auciello O. Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of (UNCD) films. Diamond and Related Materials. 2009;18:596-600.
[171] Lechleitner T, Klauser F, Seppi T, Lechner J, Jennings P, Perco P, et al. The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces. Biomaterials. 2008;29:4275-84.
[172] Popov C, Vasilchina H, Kulisch W, Danneil F, Stüber M, Ulrich S, et al. Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials. 2009;18:895-8.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *