帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭冠志
作者(外文):Kuan-Chih Kuo
論文名稱(中文):膠原蛋白水凝膠之合成與材料分析
論文名稱(外文):Synthesis and Characterization of Enzymatic Collagen Hydrogels
指導教授(中文):陳盈潔
指導教授(外文):Ying-Chieh Chen
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10125053
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:87
中文關鍵詞:膠原蛋白水凝膠
外文關鍵詞:collagen hydrogel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:769
  • 評分評分:*****
  • 下載下載:53
  • 收藏收藏:0
組織工程要能夠運用到再生醫學上最主要關鍵就是三維的血管網絡生成,由於產生這些血管網絡才能充分確保組織含有足夠的氧氣、養份和清除廢物的能力,為了血管網絡的形成,開發在臨床上使用的生物材料必須 確保能夠及時快速的與宿主血管互相聯結,才能使血液流通,避免組織內的細胞失去生存能力。
  膠原蛋白水凝膠成功的誘導使內皮前驅細胞(Endothelial colony forming cells,ECFCs)轉換成血管的形態,不幸的是膠原蛋白水凝膠會很快速的收縮退化,而且它的機械性能非常差,未來用於修復的不同組織時被受限制,因此,利用化學改質的方法來改善膠原蛋白的這些特性,是我們這篇研究最主要的目的。
  為了改善膠原蛋白的這些缺點,我們利用酪胺(tyramine)結合小鼠膠原蛋白改質,成功開發出利用辣根過氧化物酶(horseradish peroxidase/HRP)和過氧化氫(hydrogen peroxide/H2O2)這兩種化學酶進行膠聯反應的小鼠膠原蛋白水凝膠,利用這種水凝膠做為植入式生物材料,我們探討了材料本身的特性以及利用內皮前驅細胞(Endothelial colony forming cells,ECFCs)和間葉系幹細胞(mesenchymal stem cells,MSCs)進行了體內和體外的血管網絡新生研究。
  在我們的結果中發現,我們調整小鼠膠原蛋白水凝膠的成膠時間從70秒至550秒,小鼠膠原蛋白水凝膠的確具有可調控式的成膠時間,此外,我們的研究中也成功的利用改變辣根過氧化物酶(horseradish peroxidase/HRP)和過氧化氫(hydrogen peroxide/H2O2)或調整蛋白質濃度使得小鼠膠原蛋白水凝膠的機械強度可以從22 Pa達到2005 Pa,證實了小鼠膠原蛋白水凝膠在調控成膠時間、機械強度上都有不錯的表現。
  另外一方面,我們從細胞實驗的結果發現小鼠膠原蛋白水凝膠提供良好的生長環境,不論是在2D還是3D培養下,細胞都有不錯的存活率,還能夠有效的使細胞增殖。從上面這些結果我們認定小鼠膠原蛋白水凝膠是可調控成膠時間、可調控機械性質、並且提供良好細胞生長環境的一種生物相容性材料。
The success of tissue engineering as a feasible approach in regenerative medicine relies largely on the ability to generate 3D vascular networks that guarantee adequate oxygenation, nutrient delivery and removal of waste products. These vascular networks would need to be developed within clinically suitable biomaterials and in a timely manner to ensure rapid reconnection with the host vasculature and to avoid loss of cellular viability. Collagen hydrogels first appeared promising for endothelial colony-forming cells (ECFC)-mediated vascular morphogenesis. Unfortunately, their extensive contraction, rapid degradation and poor mechanical properties constituted major disadvantages toward their utilization as appropriate substrates for growth and cell delivery on wound location. The present study has investigated the enzyme-mediated method to solve these drawbacks by incorporating phenol moiety into collagen hydrogels with tunable stiffness in controlled conditions. We report a collagen hydrogel, synthesized by conjugating tyramine to mice autologous collagen. We evaluated gelation profiles during the peroxidase-catalyzed enzyme reaction, the mechanical properties and proteolytic degradability of the hydrogels. We also studied the growth of endothelial colony forming cells (ECFCs)and mesenchymal stem cells(MSCs) on the hydrogels. In our reaserch, we developed a collagen hydrogel can regulate gelatione time and mechanical properties, the gelation time can be regulated from 70 s to 550 s. And the storage modulus can be regulated from 22 Pa to 2005 Pa. The effect of enzymatic cross-linking of type I collagen gels as the embedding scaffold of umbilical cord blood-derived ECFCs and human white adipose tissue derived mesenchymal stem cells (MSCs) on generating extensive capillary-like networks in vitro and in vivo was investigated. In the result, we improved this collagen hydrogel providing a biocompatible environment for cells in 2D culture or 3D culture.
中文摘要 2
英文摘要 3
第一章 前言 4
1.血管新生與再生對於組織工程的重要性 4
2.膠原蛋白之介紹 6
3.開發膠原蛋白水凝膠動機 9
第二章 實驗步驟 11
第三章 實驗結果 20
1.小鼠膠原蛋白萃取與特性分析 20
2.水凝膠合成與分析 25
3.體外細胞模式評估小鼠膠原蛋白水凝膠的生物相容性 42
4.小鼠膠原蛋白水凝膠在動物體內骨修復之評估 66
第四章 討論 75
第五章 參考文獻 83
1. Chan-Ling, T.; Dahlstrom, J. E.; Koina, M. E.; McColm, J. R.; Sterling, R. A.; Bean, E. G.; Adamson, S.; Hughes, S.; Baxter, L. C., Evidence of hematopoietic differentiation, vasculogenesis and angiogenesis in the formation of human choroidal blood vessels. Experimental Eye Research 2011, 92 (5), 361-376.
2. Jain, R. K.; Au, P.; Tam, J.; Duda, D. G.; Fukumura, D., Engineering vascularized tissue. Nature Biotechnology 2005, 23 (7), 821-823.
3. Rafii, S.; Lyden, D., Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine 2003, 9 (6), 702-712.
4. Pedersen, T. O.; Blois, A. L.; Xing, Z.; Xue, Y.; Sun, Y.; Finne-Wistrand, A.; Akslen, L. A.; Lorens, J. B.; Leknes, K. N.; Fristad, I.; Mustafa, K., Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs. Stem Cell Research & Therapy 2013, 4.
5. Melero-Martin, J. M.; De Obaldia, M. E.; Kang, S. Y.; Khan, Z. A.; Yuan, L.; Oettgen, P.; Bischoff, J., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circulation Research 2008, 103 (2), 194-202.
6. Au, P.; Daheron, L. M.; Duda, D. G.; Cohen, K. S.; Tyrrell, J. A.; Lanning, R. M.; Fukumura, D.; Scadden, D. T.; Jain, R. K., Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008, 111 (3), 1302-1305.
7. Melero-Martin, J. M.; Khan, Z. A.; Picard, A.; Wu, X.; Paruchuri, S.; Bischoff, J., In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007, 109 (11), 4761-4768.
8. Lin, R. Z.; Melero-Martin, J. M., Fibroblast growth factor-2 facilitates rapid anastomosis formation between bioengineered human vascular networks and living vasculature. Methods 2012, 56 (3), 440-51.
9. Traktuev, D. O.; Prater, D. N.; Merfeld-Clauss, S.; Sanjeevaiah, A. R.; Saadatzadeh, M. R.; Murphy, M.; Johnstone, B. H.; Ingram, D. A.; March, K. L., Robust Functional Vascular Network Formation In Vivo by Cooperation of Adipose Progenitor and Endothelial Cells. Circulation Research 2009, 104 (12), 1410-U320.
10. Schumann, P.; Lindhorst, D.; von See, C.; Menzel, N.; Kampmann, A.; Tavassol, F.; Kokemuller, H.; Rana, M.; Gellrich, N. C.; Rucker, M., Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in Matrigel. Journal of Biomedical Materials Research Part A 2014, 102 (6), 1652-1662.
11. Daniel Druecke, S. L., Evert Lamme, Jeroen Pieper, Marija Ugarkovic,Hans Ulrich Steinau, Heinz Herbert Homann, Neovascularization of poly(ether ester) block-copolymer
scaffolds in vivo: Long-term investigations using intravital
fluorescent microscopy. Wiley Periodicals, Inc 2003, 10-18.
12. Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A., Hydrogels in Regenerative Medicine. Advanced Materials 2009, 21 (32-33), 3307-3329.
13. Lin, R. Z.; Dreyzin, A.; Aamodt, K.; Li, D.; Jaminet, S. C. S.; Dudley, A. C.; Melero-Martin, J. M., Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 2011, 118 (20), 5420-5428.
14. Allen, P.; Melero-Martin, J.; Bischoff, J., Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. Journal of Tissue Engineering and Regenerative Medicine 2011, 5 (4), E74-E86.
15. Lin, R. Z.; Chen, Y. C.; Moreno-Luna, R.; Khademhosseini, A.; Melero-Martin, J. M., Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 2013, 34 (28), 6785-96.
16. Cen, L.; Liu, W.; Cui, L.; Zhang, W. J.; Cao, Y. L., Collagen tissue engineering: Development of novel biomaterials and applications. Pediatric Research 2008, 63 (5), 492-496.
17. Yang, L.; Van der Werf, K. O.; Fitie, C. F. C.; Bennink, M. L.; Dijkstra, P. J.; Feijen, J., Mechanical properties of native and cross-linked type I collagen fibrils. Biophysical Journal 2008, 94 (6), 2204-2211.
18. Cheung, D. T.; Perelman, N.; Ko, E. C.; Nimni, M. E., MECHANISM OF CROSSLINKING OF PROTEINS BY GLUTARALDEHYDE .3. REACTION WITH COLLAGEN IN TISSUES. Connective Tissue Research 1985, 13 (2), 109-115.
19. Cheung, H. Y.; Lau, K. T.; Lu, T. P.; Hui, D., A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B-Engineering 2007, 38 (3), 291-300.
20. Damink, L.; Dijkstra, P. J.; Vanluyn, M. J. A.; Vanwachem, P. B.; Nieuwenhuis, P.; Feijen, J., GLUTARALDEHYDE AS A CROSS-LINKING AGENT FOR COLLAGEN-BASED BIOMATERIALS. Journal of Materials Science-Materials in Medicine 1995, 6 (8), 460-472.
21. Simmons, D. M.; Kearney, J. N., EVALUATION OF COLLAGEN CROSS-LINKING TECHNIQUES FOR THE STABILIZATION OF TISSUE MATRICES. Biotechnology and Applied Biochemistry 1993, 17, 23-29.
22. Gaudet, I. D.; Shreiber, D. I., Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases 2012, 7 (1-4), 25.
23. Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31 (21), 5536-5544.
24. Barzideh, Z.; Latiff, A. A.; Gan, C.-Y.; Benjakul, S.; Karim, A. A., Isolation and characterisation of collagen from the ribbon jellyfish (Chrysaorasp.). International Journal of Food Science & Technology 2014, 49 (6), 1490-1499.
25. Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M., Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry 2005, 89 (3), 363-372.
26. Giraud-Guille, M. M.; Besseau, L.; Chopin, C.; Durand, P.; Herbage, D., Structural aspects of fish skin collagen which forms ordered arrays via liquid crystalline states. Biomaterials 2000, 21 (9), 899-906.
27. Usha, R.; Sreeram, K. J.; Rajaram, A., Stabilization of collagen with EDC/NHS in the presence of L-lysine: a comprehensive study. Colloids and surfaces. B, Biointerfaces 2012, 90, 83-90.
28. Ahmad, M.; Benjakul, S., Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket (Aluterus monocerous). Food Chemistry 2010, 120 (3), 817-824.
29. Kaewdang, O.; Benjakul, S.; Kaewmanee, T.; Kishimura, H., Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry 2014, 155, 264-70.
30. Krishnamoorthy, G.; Selvakumar, R.; Sastry, T. P.; Mandal, A. B.; Doble, M., Effect of d-amino acids on collagen fibrillar assembly and stability: Experimental and modelling studies. Biochemical Engineering Journal 2013, 75, 92-100.
31. Kim, B. S.; Choi, J. S.; Kim, J. D.; Yoon, H. I.; Choi, Y. C.; Cho, Y. W., Human collagen isolated from adipose tissue. Biotechnology progress 2012, 28 (4), 973-80.
32. Nalinanon, S.; Benjakul, S.; Kishimura, H.; Osako, K., Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis. Food Chemistry 2011, 125 (2), 500-507.
33. Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F., Isolation and characterization of collagen from the cartilages of brownbanded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatus). Lwt-Food Science and Technology 2010, 43 (5), 792-800.
34. Wang, L. S.; Chung, J. E.; Chan, P. P. Y.; Kurisawa, M., Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 2010, 31 (6), 1148-1157.
35. Wang, L. S.; Du, C.; Chung, J. E.; Kurisawa, M., Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta biomaterialia 2012, 8 (5), 1826-37.
36. Oudgenoeg, G.; Hilhorst, R.; Piersma, S. R.; Boeriu, C. G.; Gruppen, H.; Hessing, M.; Voragen, A. G. J.; Laane, C., Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid. Journal of Agricultural and Food Chemistry 2001, 49 (5), 2503-2510.
37. Lee, F.; Chung, J. E.; Kurisawa, M., An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008, 4 (4), 880.
38. Xu, K.; Lee, F.; Gao, S. J.; Chung, J. E.; Yano, H.; Kurisawa, M., Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha2a for liver cancer therapy. Journal of controlled release : official journal of the Controlled Release Society 2013, 166 (3), 203-10.
39. Kurisawa, M.; Chung, J. E.; Yang, Y. Y.; Gao, S. J.; Uyama, H., Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun (Camb) 2005, (34), 4312-4.
40. Sakai, S.; Hirose, K.; Taguchi, K.; Ogushi, Y.; Kawakami, K., An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009, 30 (20), 3371-7.
41. Yamamura, N.; Sudo, R.; Ikeda, M.; Tanishita, K., Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 2007, 13 (7), 1443-53.
42. Park, K. M.; Ko, K. S.; Joung, Y. K.; Shin, H.; Park, K. D., In situ cross-linkable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. Journal of Materials Chemistry 2011, 21 (35), 13180-13187.
43. William T. Brinkman, K. N., Benjamin S. Thomas, and Elliot L. Chaikof, Photo-Cross-Linking of Type I Collagen Gels in the Presence of Smooth Muscle Cells: Mechanical Properties, Cell Viability, and Function. Biomacromolecules 2003, 890-895.
44. El-Fiqi, A.; Lee, J. H.; Lee, E. J.; Kim, H. W., Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta biomaterialia 2013, 9 (12), 9508-21.
45. Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J., Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011, 32 (21), 4725-4736.
46. Chen, Y. C.; Lin, R. Z.; Qi, H.; Yang, Y.; Bae, H.; Melero-Martin, J. M.; Khademhosseini, A., Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels. Adv Funct Mater 2012, 22 (10), 2027-2039.
47. Discher, D. E., Matrix elasticity directs stem cell lineage - Soluble factors that limit osteogenesis. Bone 2009, 44 (2), S205-S206.
48. Sieminski, A. L.; Hebbel, R. P.; Gooch, K. J., The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Experimental Cell Research 2004, 297 (2), 574-584.
49. Sieminski, A. L.; Was, A. S.; Kim, G.; Gong, H.; Kamm, R. D., The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochemistry and Biophysics 2007, 49 (2), 73-83.
50. Lai, J. Y.; Li, Y. T., Functional Assessment of Cross-Linked Porous Gelatin Hydrogels for Bioengineered Cell Sheet Carriers. Biomacromolecules 2010, 11 (5), 1387-1397.
51. Araujo, M.; Linder, E.; Lindhe, J., Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clinical Oral Implants Research 2009, 20 (1), 1-6.
52. Araujo, M. G.; Lindhe, J., Socket grafting with the use of autologous bone: an experimental study in the dog. Clinical Oral Implants Research 2011, 22 (1), 9-13.
53. Kaigler, D.; Silva, E. A.; Mooney, D. J., Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. Journal of periodontology 2013, 84 (2), 230-8.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *