帳號:guest(3.145.155.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃園翔
作者(外文):Yuan-Siang Huang
論文名稱(中文):補充樟芝菌絲體對衰竭運動後大鼠血液生化指標之影響
論文名稱(外文):The Effects of Antrodia camphorata Mycelium Supplementation on Blood Biochemical Parameters after Exhaustive Exercise in Rats
指導教授(中文):謝錦城
指導教授(外文):City C. Hsieh
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:體育學系碩士班
學號:10124910
出版年(民國):104
畢業學年度:103
中文關鍵詞:疲勞肌肉損傷氧化壓力肝損傷血脂肪
外文關鍵詞:fatiguemuscle damageoxidative stressliver injuryplasma lipid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
目的:探討補充樟芝菌絲體對衰竭運動後大鼠血液生化指標之影響。方法:40隻雄性大鼠隨機分成四組,分別為控制組(C)、衰竭運動組(E)、樟芝組(A)和樟芝衰竭運動組(AE)。A及AE組依照大鼠每公斤體重每天投予0.3克樟芝,為期四週;E及AE組以漸增式衰竭運動模式跑至衰竭。以獨立樣本t檢定分析運動時間,再以二因子變異數分析血液生化指標包括:血糖(Glu)、乳酸(Lac)、乳酸脫氫酶(LDH)、肌酸激酶(CK)、丙二醛(MDA)、超氧離子歧化酶(SOD)、麩胱甘肽過氧化酶(GSH-Px)、麥胺草醋酸轉胺酶(AST)、麥胺丙酮酸轉胺酶(ALT)、三酸甘油酯(TG)、總膽固醇(TC)、高密度脂蛋白膽固醇(HDL-C)及低密度脂蛋白膽固醇(LDL-C)。結果:AE組運動時間顯著高於E組,E組的Lac、LDH、CK、MDA及ALT數據顯著高於C組及AE組,AST活性顯著高於C組,Glu、SOD、GSH-Px、TG及TC數值顯著低於C組,SOD活性顯著低於AE組。A組的Glu、SOD活性顯著高於C組,GSH-Px活性顯著高於AE組,MDA及CK值顯著低於AE組。結論:本研究推論補充樟芝菌絲體有助於減緩大鼠因衰竭運動後造成疲勞之現象,降低肌肉損傷,減少氧化壓力及肝損傷之情形,且維持血糖穩定,使運動時間延長。
Abstract
Purpose: The purpose of this study examined the effects of Antrodia camphorata supplementation on blood biochemical parameters after exhaustive exercise in rats. Methods: Forty male Sprague-Dawley rats were randomly divided into four groups: control (C, n = 10), exhaustive exercise (E, n = 10), A. camphorata supplemented (A, n = 10) and A. camphorata plus exhaustive exercise (AE, n = 10). A. camphorata was supplemented at the dose for four weeks. Exhaustive exercise was performed on a rodent treadmill with the progressive protocol. Two way ANOVA and t-test were performed to examine the effects of exhaustive exercise and A. camphorata supplementation on exercise duration, glucose (Glu), Lactate (Lac), lactate dehydrogenase (LDH), creatine kinase (CK), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) levels. Results: The plasma Lac, LDH, CK, MDA, and ALT levels in E group were significantly higher than C and AE group, AST activities were significantly higher than C group, while the level of Glu, SOD, GSH-Px, TG and TC were significantly lower than C group, and the plasma SOD activities were significantly lower than AE group. The level of Glu and SOD in A group was significantly higher than C group, while the level of GSH-Px levels were significantly higher than AE group, and the plasma MDA and CK levels were significantly lower than AE group. Conclusions: It was inferred from the experiment that A. camphorata mycelium supplementation could be beneficial for alleviating the fatigue after exhaustive exercise in rat, and reduce muscle damage, as well as decrease the oxidative stress and harm on liver function. It also maintains the blood glucose level, which results in prolonging the duration of endurance exercise.
目 錄
口試委員與系主任簽字之論文通過簽名表 I
論文授權書 II
中文摘要 III
英文摘要 IV
謝誌 V
目次 VI
表次 VIII
圖次 IX
第壹章 緒論 1
第一節 問題背景 1
第二節 研究目的 3
第三節 研究假設 4
第四節 名詞操作性定義 4
第五節 研究範圍與限制 6
第六節 研究的重要性 6
第貳章 文獻探討 7
第一節 運動與疲勞 7
第二節 運動與肌肉損傷 8
第三節 運動與氧化壓力 9
第四節 運動與肝損傷指標 11
第五節 運動與血脂肪 12
第六節 樟芝與血液生化指標 12
第七節 本章小節 13
第參章 研究方法 15
第一節 實驗對象 15
第二節 材料與儀器 15
第三節 實驗設計 17
第四節 實驗流程 19
第五節 生化分析 20
第六節 資料處理 20
第肆章 結果 21
第一節 疲勞指標 21
第二節 肌肉損傷指標 23
第三節 氧化壓力指標 25
第四節 肝損傷指標 28
第五節 血脂肪指標 30
第伍章 討論 32
第一節 樟芝補充與疲勞 32
第二節 樟芝補充與肌肉損傷 33
第三節 樟芝補充與氧化壓力 33
第四節 樟芝補充與肝損傷指標 34
第五節 樟芝補充與血脂肪 35
第陸章 結論與建議 37
參考文獻 38


表 次
表4-1-1 各組大鼠運動時間、血糖及乳酸之數據....................................................21
表4-2-1 各組大鼠乳酸脫氫酶及肌酸激酶的活性..................................................23
表4-3-1 各組大鼠丙二醛、超氧離子歧化酶及麩胱甘肽過氧化酶之數據............25
表4-4-1 各組大鼠麥胺草醋酸轉胺酶及麥胺丙酮酸轉胺酶的活性......................28
表4-5-1 各組大鼠三酸甘油酯、總膽固醇、高密度脂蛋白膽固醇與
低密度脂蛋白膽固醇濃度 30

圖 次
圖2-3-1 自由基與抗氧化清除作用 11
圖3-2-1 老鼠電動跑步機 16
圖3-3-1 餵食老鼠之情形 17
圖3-3-2 大鼠漸增式衰竭運動處方 18
圖3-4-1 實驗流程圖 19
圖4-1-1 衰竭運動與樟芝補充對血糖濃度的影響 22
圖4-1-2 衰竭運動與樟芝補充對乳酸濃度的影響 22
圖4-2-1 衰竭運動與樟芝補充對乳酸脫氫酶活性的影響 23
圖4-2-2 衰竭運動與樟芝補充對肌酸激酶活性的影響 24
圖4-3-1 衰竭運動與樟芝補充對丙二醛濃度的影響 26
圖4-3-2 衰竭運動與樟芝補充對超氧離子歧化酶活性的影響 26
圖4-3-3 衰竭運動與樟芝補充對麩胱甘肽過氧化酶活性的影響 27
圖4-4-1 衰竭運動與樟芝補充對麥胺草醋酸轉胺酶活性的影響 29
圖4-4-2 衰竭運動與樟芝補充對麥胺丙酮酸轉胺酶活性的影響 29
圖4-5-1 衰竭運動與樟芝補充對三酸甘油酯濃度的影響 31
圖4-5-2 衰竭運動與樟芝補充對總膽固醇濃度的影響 31
參考文獻
李鴻志、林淑惠(2007)。電動跑步機衰竭運動對低密度脂蛋白與高密度脂蛋白比例的影響。大專體育學術專刊,528-533。
沈子斐(2002)。探討血紅素、血漿肌酸激酶及血尿素氮在三週武術訓練之應用。大專體育學刊,4,141-148。
林正常(1995)。從生理學談運動疲勞。中華體育季刊,9,35-43。
林曉汶、許美智(2008)。運動營養增補劑:瓜拿那。北體學報,16,309-316。
林恭儀、曹永昌、邱仲峯(2013)。牛樟芝的傳統與現代用藥考據。北市中醫會刊,19,13-18。
姚承義、謝伸裕、沈淑貞(2005)。魚油增補對運動引發氧化壓力的探討。運動生理暨體能學報,2,67-78。
陳嫣芬、林孟楷、方文星、林季嬋、楊英欽(2014)。以捷泳雙臂和單臂動態恢復對選手訓練後血乳酸排除與運動表現之影響。運動與健康研究,3,17-30。
許壬榮、呂學冠、謝錦城(1998)。大鼠的漸增衰竭運動模式之研究。中華體育季刊,12,94-100。
康如佩、劉介仲、林俊宏、張惟翔、謝錦城(2010)。補充靈芝對衰竭運動後老鼠抗氧化能力及肌肉損傷之影響。大專體育學刊,12,95-101。
喬威敦(2008)。攝取樟芝多醣體對於長期中高強度訓練之運動員免疫系統與肝指數之研究(未出版碩士論文)。國立屏東教育大學,屏東市。
趙安基、丘宏治、蔡清恩(2011)。奈米銀凝膠對糖尿病大鼠皮膚傷口癒合效應之研究。臺灣獸醫學雜誌,37,6-44。
趙東波、吳佩芬、黃雅芳、張旭男、林恒騰、姜泰安、盧彥哲(2013)。探討樟芝萃取物調控人類大腸癌細胞凋亡之訊息路徑研究。南臺灣醫學雜誌,9,89-97。
劉介仲、林政賢、林雋毅、李進成、謝宇翔、謝錦城、溫小娟(2013)。過度表現熱休克蛋白質 72 減緩耗竭性運動所誘發的傷害。大專體育學刊,15,472-481。
謝錦城(1998)。當歸、鹿角龜版膠混合液補給對衰竭運動引起老鼠紅血球氧化傷害的影響。體育學報,26,177-184。
顏世榮(2007)。樟芝降三酸甘油脂之功能研究(未出版碩士論文)。 臺北醫學大學,台北市。
Abe, T., Takiguchi, Y., Tamura, M., Shimura, J., & Yamazaki, K. I. (1995). Effects of vespa amino acid mixture (VAAM) isolated from hornet larval saliva and modified VMM nutrients on endurance exercise in swimming mice-improvement in performance and changes of blood lactate and glucose. Japanese Journal of Physical Fitness and Sports Medicine, 44, 225-237.
Aquino Jr, A. E., Sene-Fiorese, M., Paolillo, F. R., Duarte, F. O., Oishi, J. C., Pena Jr, A. A., ... & Parizotto, N. A. (2013). Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet. Lasers in Medical Science, 28, 1271-1280.
Badalzadeh, R., Shaghaghi, M., Mohammadi, M., Dehghan, G., & Mohammadi, Z. (2014). The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats. Advanced Pharmaceutical Bulletin, 4, 515-520.
Banfi, G., Colombini, A., Lombardi, G., & Lubkowska, A. (2012). Metabolic markers in sports medicine. Advances in Clinical Chemistry, 56, 1-54.
Bijsterbosch, M. K., Duursma, A. M., Smit, M. J., Bos, O. J., Bouma, J. M., & Gruber, M. (1985). Several dehydrogenases and kinases compete for endocytosis from plasma by rat tissues. Biochemical Journal, 229, 409-417.
Brancaccio, P., Lippi, G., & Maffulli, N. (2010). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine, 48, 757-767.
Brehm, B. A., & Jannotta, J. G. (1998). Women and physical activity: Active lifestyle enhance and well-being. Journal of Health Education, 29, 89-92.
Bryer, S. C., & Goldfarb, A. H. (2006). Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. International Journal of Sport Nutrition and Exercise Metabolism, 16, 270-280.
Culotta, V. C., Yang, M., & O'Halloran, T. V. (2006). Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta, 1763, 747-758.
Dai, Y. Y., Chuang, C. H., Tsai, C. C., Sio, H. M., Huang, S. C., Chen, J. C., & Hu, M. L. (2003). The protection of Antrodia camphorata against acute hepatotoxicity of alcohol in rats. Journal of Food and Drug Analysis, 11, 177-185.
Davies, K. J., Quintanilha, A. T., Brooks, G. A., & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 107, 1198-1205.
Deng, J. S., Huang, S. S., Lin, T. H., Lee, M. M., Kuo, C. C., Sung, P. J., ... & Kuo, Y. H. (2013). Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. Journal of Agricultural and Food Chemistry, 61, 5064-5071.
Dittrich, N., de Lucas, R. D., Beneke, R., & Guglielmo, L. G. A. (2014). Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise. International Journal of Sports Physiology and Performance, 9, 772-776.
Finaud, J., Lac, G., & Filaire, E. (2006). Oxidative stress : relationship with exercise and training. Sports Medicine, 36, 327-358.
Frajacomo, F. T. T., Demarzo, M. M. P., Fernandes, C. R., Martinello, F., Bachur, J. A., Uyemura, S. A., ... & Garcia, S. B. (2012). The effects of high-intensity resistance exercise on the blood lipid profile and liver function in hypercholesterolemic hamsters. Applied Physiology, Nutrition, and Metabolism, 37, 448-454.
Geethangili, M., & Tzeng, Y. M. (2011). Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-based complementary and alternative medicine, 2011, Article 212641. doi: 10.1093/ecam/nep108
Griendling, K. K., & FitzGerald, G. A. (2003). Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108, 1912-1916.
Griffiths, A., Kouvonen, A., Pentti, J., Oksanen, T., Virtanen, M., Salo, P., ... & Vahtera, J. (2014). Association of physical activity with future mental health in older, mid-life and younger women. The European Journal of Public Health, 24, 813-818.
Hammouda, O., Chtourou, H., Chaouachi, A., Chahed, H., Ferchichi, S., Kallel, C., ... & Souissi, N. (2012). Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian Journal of Sports Medicine, 3, 239-246.
Han, H. F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T., & Hattori, M. (2006). Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chemical & Pharmaceutical Bulletin, 54, 496-500.
Heigenhauser, G. J., Sutton, J. R., & Jones, N. L. (1983). Effect of glycogen depletion on the ventilatory response to exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 54, 470-474.
Hseu, Y. C., Chang, W. C., Hseu, Y. T., Lee, C. Y., Yech, Y. J., Chen, P. C., ... & Yang, H. L. (2002). Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences, 71, 469-482.
Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., & Yang, H. L. (2005). Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. International Immunopharmacology, 5, 1914-1925.
Hseu, Y. C., Chen, S. C., Yech, Y. J., Wang, L., & Yang, H. L. (2008). Antioxidant activity of Antrodia camphorata on free radical-induced endothelial cell damage. Journal of Ethnopharmacology, 118, 237-245.
Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., & Sheu, J. R. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. Journal of Agricultural and Food Chemistry, 51, 3302-3308.
Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-rich extract from Antrodia camphorata improves physical fatigue and exercise performance in mice. Evidence-Based Complementary and Alternative Medicine, 2012, Article 364741. doi: 10.1155/2012/364741
Huang, K. C., Wu, W. T., Yang, F. L., Chiu, Y. H., Peng, T. C., Hsu, B. G., ... & Lee, R. P. (2013). Effects of freshwater clam extract supplementation on time to exhaustion, muscle damage, pro/anti-inflammatory cytokines, and liver injury in rats after exhaustive exercise. Molecules, 18, 3825-3838.
Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K. I., ... & Takeshita, A. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529-535.
Jówko, E., Długołęcka, B., Makaruk, B., & Cieśliński, I. (2014). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European Journal of Nutrition. doi: 10.1007/s00394-014-0757-1
Kato, M., Kurakane, S., Nishina, A., Park, J., & Chang, H. (2013). The blood lactate increase in high intensity exercise is depressed by Acanthopanax sieboldianus. Nutrients, 5, 4134-4144.
Kawamori, R., Kadowaki, T., & Ishida, H. (2004). Achieving better control of blood sugar--understanding of oral hypoglycemic agents according to their characteristics in pharmacological action mechanism (discussion). Nihon Rinsho. Japanese Journal of Clinical Medicine, 62, 831-839.
Kinoshita, S., Yano, H., & Tsuji, E. (2003). An increase in damaged hepatocytes in rats after high intensity exercise. Acta physiologica scandinavica, 178, 225-230.
Ko, H. J., Chang, J. C., Shieh, M. J., Cheng, L. S., Lai, M. N., & Ng, L. T. (2008). Effects of Antrodia cinnamomea extract on plasma and liver lipid profiles, and antioxidant enzymes in experimentally induced hyperlipidemic hamsters. Tajen Journal, 32, 19-33.
Korivi, M., Hou, C. W., Huang, C. Y., Lee, S. D., Hsu, M. F., Yu, S. H., ... & Kuo, C. H. (2011). Ginsenoside-Rg1 protects the liver against exhaustive exercise-induced oxidative stress in rats. Evidence-Based Complementary and Alternative Medicine, 2012, Article 932165. doi: 10.1155/2012/932165
Larson‐Meyer, D. E., Newcomer, B. R., Heilbronn, L. K., Volaufova, J., Smith, S. R., Alfonso, A. J., & Ravussin, E. (2008). Effect of 6‐month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity, 16, 1355-1362.
Lawler, J. M., Kwak, H. B., Song, W., & Parker, J. L. (2006). Exercise training reverses downregulation of HSP70 and antioxidant enzymes in porcine skeletal muscle after chronic coronary artery occlusion. American Journal of Physiology-Regulatory, 291, 1756-1763.
Lehmann, M., Dickhuth, H. H., Gendrisch, G., Lazar, W., Thum, M., Kaminski, R., & Keul, J. (1991). Training-overtraining. A prospective, experimental study with experienced middle-and long-distance runners. International Journal of Sports Medicine, 12, 444-452.
Mascher, H., Tannerstedt, J., Brink-Elfegoun, T., Ekblom, B., Gustafsson, T., & Blomstrand, E. (2008). Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 294, 43-51.
Meek, T. H., Eisenmann, J. C., Keeney, B. K., Hannon, R. M., Dlugosz, E. M., & Garland, T. (2014). Effects of early‐life exposure to western diet and wheel access on metabolic syndrome profiles in mice bred for high voluntary exercise. Genes, Brain and Behavior, 13, 322-332.
Powers, S. K., Criswell, D., Lawler, J, Ji, L. L., Martin, D, Herb, R. A., & Dudley, G. (1994). Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 266, 375-380.
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88, 1243-1276.
Reid, M. B. (2008). Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radical Biology and Medicine, 44, 169-179.
Romagnoli, M., Alis, R., Aloe, R., Salvagno, G. L., Basterra, J., Pareja-Galeano, H., ... & Lippi, G. (2014). Influence of training and a maximal exercise test in analytical variability of muscular, hepatic, and cardiovascular biochemical variables. Scandinavian Journal of Clinical & Laboratory Investigation, 74, 192-198.
Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., Endert, E., & Wolfe, R. R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265, 380-391.
Serresse, O., Lortie, G., Bouchard, C., & Boulay, M. R. (1988). Estimation of the contribution of the various energy systems during maximal work of short duration. International journal of sports medicine, 9, 456-460.
Simmonds, M. J., Connes, P., & Sabapathy, S. (2013). Exercise-induced blood lactate increase does not change red blood cell deformability in cyclists. Plos One, 8. doi:10.1371
Song, T. Y., & Yen, G. C., (2003). Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of Agricultural and Food Chemistry, 51, 1571-1577.
Souza, W. M., Heck, T. G., Wronski, E. C., Ulbrich, A. Z., & Boff, E. (2013). Effects of creatine supplementation on biomarkers of hepatic and renal function in young trained rats. Toxicology Mechanisms and Methods, 23, 697-701.
Steinmo, S., Hagger-Johnson, G., & Shahab, L. (2014). Bidirectional association between mental health and physical activity in older adults: Whitehall II prospective cohort study. Preventive medicine, 66, 74-79.
Tsai, P. H., Kan, N. B., Liu, C. C., Jeng, M. L., He, S. C., & Lin, C. C. (2004). Changes in blood lipid peroxidation markers after a single bout of exhaustive exercise. Annual Journal of Physical Education and Sports Science, 4, 77-86.
Urso, M. L., & Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189, 41-54.
Zaheer, S., Moiz, J. A., Shareef, M. Y., & Hussain, E. (2014). Effect of preconditioning by light load eccentric exercise versus heat on markers of muscle damage in collegiate males. Asian Journal of Sports Medicine, 5. doi: 10.5812
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *