帳號:guest(18.116.86.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭光右
作者(外文):Kuan-You Peng
論文名稱(中文):旋量玻色-愛因斯坦凝聚於約費-朴立卻德磁場下之 基態與激發態解
論文名稱(外文):The Ground and Excited States of Spinor Bose-Einstein Condensates with Ioffe--Pritchard Magnetic Field
指導教授(中文):陳人豪
指導教授(外文):Jen-Hao Chen
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學號:10124211
出版年(民國):103
畢業學年度:102
語文別:中文
中文關鍵詞:玻色-愛因斯坦凝聚約費-朴立卻德磁場基態與激發態解
外文關鍵詞:Bose-Einstein CondensatesIoffe--Pritchard Magnetic FieldGround and Excited States
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這篇論文中,我們採用延續法(PACM)來計算自旋為1 的
玻色-愛因斯坦凝聚(BEC)的約費-朴立卻德磁場下的基態
和激發態解。把自旋無關的作用力、自旋交換的作用力與約
費-朴立卻德強度磁場為延續法的參數。特別是線性薛丁格
方程(LSE)為延續法的起始點。最後比較相對應的能量,
我們可以在約費-朴立卻德磁場影響下自旋為1 下的基態。
In this thesis, we employ the parameter switching continuation
methods (PACM) to compute the ground and excited state solutions of
the spin-1 Bose Einstein condensates (BEC) with the Ioffe-Pritchard
magnetic field.
The spin-independent and spin-exchange coupling constants and the
strength of Ioffe-Pritchard magnetic field are treated as the continuation
parameters. Particularly, the ground and excited state solutions of the
linear Schrödinger equation (LSE) which describes the BEC system
without any interaction are used as the starting points in the
continuation process. Finally, by comparing the corresponding energies,
we can obtain the ground state of the spin-1 BEC under the effect of the
Ioffe-Pritchard magnetic field.
1. Introduction 1
2. Model Description 3
3. Numerical Schemes 8
3.1. Pseudo-Arclength Continuation Method 8
3.2. Starting Points in Continuation Process 10
4. Numerical Results 13
4.1. The case of B(x) = cos(x) + isin(x), gn = 400, and gs = 250 13
4.2. The case of B(x) = cos(x) + isin(x), gn = 400; and gs = -250 15
4.3. The case of B(x) = cos(x) + icos(x), gn = 400, and gs = 250 18
4.4. The case of B(x) = cos(x) + icos(x), gn = 400, and gs = -250 20
4.5. Effect of gs 23
5. Conclusion 26
References
[1] M. H. Anderson, J. R. Ensher, M. R. Mathews, C. E. Wieman, and E.
A., Observation of Bose-Einstein condensation in a dilute atomic vapor,
Science 269 (1995) 198-201.
[2] E. Allgower and K. Georg, Numerical Continuation Methods: An Intro-
duction, Springer-Verlag, New York, 1990.
[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence
of Bose-Einstein condensation in an atomic gas with attractive interac-
tions, Phys. Rev. Lett. 75 (1995) 1687-1690.
[4] S.-L. Chang, C.-S. Chien, Adaptive continuation algorithms for comput-
ing energy levels of rotating Bose-Einstein condensates, Comput. Phys.
Comm. 177 (2007) 707-719.
[5] P. K÷osiewicz, J. Broeckhove, W. Vanroose, Using pseudo-arclength con-
tinuation to trace the resonances of the Schrödinger equation, Comput.
Phys. Comm. 180 (2009) 545-548.
[6] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J.
Miesner, J. Stenger and W. Ketterle, Optical con…nement of a Bose-
Einstein condensate, Phys. Rev. Lett. 80 (1998) 2027-2030.
[7] M. Moreno-Cardoner, J. Mur-Petit, M. Guilleumas, A. Polls, A. San-
pera, and M. Lewenstein, Predicting spinor condensate dynamics from
simple principles, Phys. Rev. Lett. 99 (2007) 020404-020407.
27
[8] T.-L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81
(1998) 742-745.
[9] Tomoya Isoshima, Kazushige Machida, and Tetsuo Ohmi, Spin-domain
formation in spinor Bose-Einstein condensation, Phys. Rev. A 60 (1999)
4857-4863.
[10] W. Bao and H. Wang, A mass and magnetization conservative and en-
ergydiminishing numerical method for computing ground state of spin-1
Bose-Einstein condensates, SIAM J. Numer. Anal. 45 (2007) 2177-2200.
[11] M.-S. Chang, Q. Qin, W. Zhang, Y. Li and Michael S. Chapman, Coher-
ent spinor dynamics in a spin-1 Bose condensate, Nature Phys. 1 (2005)
111-116.
[12] J. Mur-Petit, M. Guilleumas, A. Polls, A. Sanpera, and M. Lewenstein,
Dynamics of F = 1 87Rb condensates at …nite temperatures, Phys. Rev.
A 73 (2006) 013629-013634.
[13] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and
B. J. Verhaar, Interisotope determination of ultracold Rubidium interac-
tions from three high-precision experiments, Phys. Rev. Lett. 88 (2002)
093201-093204.
[14] M. Takahashi, V. Pietilä, M. Möttönen, T. Mizushima, and K. Machida,
Vortex-splitting and phase-separating instabilities of coreless vortices in
28
F = 1 spinor Bose-Einstein condensates, Phys. Rev. A 73 (2009) 023618-
023631.
[15] Y.-C. Kuo , W.-W. Lin , S.-F. Shieh, and W. Wang, A minimal en-
ergy tracking continuation method for coupled nonlinear Schrödinger
equations, J. Comput. Phys. 228 (2009) 7941-7956.
[16] Y.-C. Kuo , W.-W. Lin , S.-F. Shieh, and W. Wang, A hyperplane-
constrained continuation method for near singularity in coupled non-
linear Schrödinger equations, Applied Numerical Mathematics (2010),
doi:10.1016/j.apnum.2009.11.007.
[17] Matuszewski, M. and Alexander, T. J. and Kivshar, Y. S., Excited spin
states and phase separation in spinor Bose-Einstein condensates, Phys.
Rev. A, 80 (2009) 023602-023610.
[18] S.-M. Chang, Y.-C. Kuo, W.-W. Lin, S.-F. Shieh, A continuation
BSOR-Lanczos-Galerkin method for positive bound states of a multi-
component Bose-Einstein condensate, J. Comput. Phys. 210 (2005) 439-
458.
[19] Jen-Hao Chen, I-Liang Chern, Weichung Wang, Exploring Ground
States and Excited States of Spin-1 Bose-Einstein Condensates by Con-
tinuation Methods, J. Comput. Phys. 230 (2011) 2222–2236.
[20] Weizhu Bao and Fong Yin Lim, Computing Ground States of Spin-1
29
Bose–Einstein Condensates by the Normalized Gradient Flow, SIAM J.
Sci. Comput., 30 (2008) 1925–1948.
[21] Pei-Gen Yan, Shen-Tong Ji, Xue-Shen Liu, Symmetry breaking and tun-
neling dynamics of F = 1 spinor Bose–Einstein condensates in a triple-
well potential, Physics Letters A, 77 (2013) 878–884.
[22] A. Benseny, S. Fernández-Vidal, J. Bagudà, R. Corbalán, A. Picón,
L. Roso, G Birkl and J. Mompart, Atomtronics with holes: Coherent
transport of an empty site in a triple-well potential, Phys. Rev. A 82
(2010) 013604-013611.
[23] U.Ernst, A.Marte, F.Schreck, J.Schuster, G.Rempe, Bose-Einstein con-
densation in a pure Io¤e-Pritchard …eld con…guration, Europhys. Lett.
41 (1998) 1-6.
[24] T Isoshima, M Nakahara, T Ohmi, K Machida, Creation of a persistent
current and vortex in a Bose-Einstein condensate of alkali-metal atoms,
Physical review letters, 61 (2000), 063610.
[25] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ket-
terle, Coreless Vortex Formation in a Spinor Bose-Einstein Condensate,
Physical review letters. 90 (2003), 140403.1-140403.4.
[26] Weizhu Bao, I-Liang Chen, Yanzhi Zhang, E¢ cient numerical methods
for computing ground states of spin-1 Bose–Einstein condensates based
on their characterizations, J. Comput. Phys. 253 (2013) 189-208.
30
[27] EN Bulgakov, AF Sadreev, Vortex phase diagram of F= 1 spinor Bose-
Einstein condensates, Physical review letters, 90 (2003) 200401.
[28] Z. F. Xu, P. Zhang, C. Raman, L. You, Continuous vortex pumping
into a spinor condensate with magnetic …elds, Physical review letters,
78 (2008) 043606.1-043606.8.
31
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *