帳號:guest(18.188.226.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古芝如
論文名稱(中文):探討靜態、動態、結合動靜態視覺表徵融入教學對國小學生科學學習成就和科學學習動機的影響
論文名稱(外文):A comparative study of the effects of static and dynamic visualization teaching methods on elementary school students’ science achievement and motivation to learn science
指導教授(中文):王姿陵
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:數理研究所(自然組)
學號:10025651
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:171
中文關鍵詞:熱與溫度概念改變另有概念動態視覺表徵靜態視覺表徵
外文關鍵詞:heat and temperatureconceptual changealternative conceptiondynamic visualizationstatic visualizatio
相關次數:
  • 推薦推薦:0
  • 點閱點閱:72
  • 評分評分:*****
  • 下載下載:44
  • 收藏收藏:0
中文摘要

本研究的目的在探討三種教學策略(靜態、動態、結合動靜態視覺表徵融入教學)對國小六年級學生科學學習成就、科學學習動機與概念理解的影響,並進一步探討上述效應對不同空間能力學生科學學習成就的影響。
本研究採準實驗研究設計,參與的樣本來自一所公立國小六年級六個班級的學生,共191人。分別隨機選派兩班至實驗組S(靜態視覺表徵融入教學)、實驗組D(動態視覺表徵融入教學)以及實驗組SD(結合動靜態視覺表徵融入教學)。研究工具包含:熱與溫度成就測驗、二階診斷測驗、科學學習動機量表、空間關係測驗以及開放式問卷。資料分析方法包含:獨立樣本單因子共變數分析(one-way ANCOVA)、卡方檢定(chi-square)、精確檢定(exact test)、獨立樣本t檢定(independent-sample t test)以及敘述統計(descriptive statistics)。
本研究的重要發現如下:
一、結合動靜態視覺表徵融入教學對於學生自然科學習成就的影響顯著優於單獨使用靜態視覺表徵融入教學。
二、靜態視覺表徵、動態視覺表徵與結合動靜態視覺表徵融入教學對學生科學學習動機的影響沒有顯著差異。
三、結合動靜態視覺表徵融入教學對於促進學生正確科學概念理解以及概念澄清的成效優於單獨使用靜態或動態視覺表徵融入教學,且學生能達到較佳的概念理解程度;實驗教學後三實驗組的學生仍然存在一些共同的另有概念。
四、結合動靜態視覺表徵融入教學有助於提升低空間能力學生的自然科學習成就。

Abstract
This major purpose of the study is to investigate the effects of the three teaching methodologies (a static visualization instruction, a dynamic visualization instruction, and a combining static and dynamic visualization instruction) on sixth grade elementary school students’ science achievement, conceptual change, and motivation toward science learning in the topic of heat and temperature. The second purpose of the study is to investigate the effects of the three teaching methodologies on students’ science achievement while considering their spatial ability levels.
A quasi-experimental design was used in this study. The participants were 191 sixth grade students from six science classes in an elementary school. Of the six science classes, two science classes were assigned as the static visualization instruction group, two science classes were assigned as the dynamic visualization instruction group, and two science classes were assigned as the combining static and dynamic visualization instruction group, respectively. Five instruments, the Heat and Tempterature Achievement Test, the Two-Tier Conceptual Test, the Motivation to Learn Science Questionnaire, the PMA Spatial Relations Test, and the Open-Ended Questionnaire were used to collect data. Data were analyzed using one-way ANCOVA, chi-square, exact test, independent-samples test, and descriptive statistics.
The major findings of this study are as follows :
1. Students in the combining static and dynamic visualization context tended to exhibit better science achievement compared to them in the static visualization context.
2. There were no significant differences between the three groups with regard to students’ motivation toward science learning.
3. Students in the combining static and dynamic visualization context tended to exhibit better concpetual change compared to them in the static visualization context and the dynamic visualization context.
4. Students with low spatial ability in the combining static and dynamic visualization context achieved a higher mean gain score compared to them with high spatial abiltiy for science achievement.
目次
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與問題 3
第三節 名詞釋義 4
第四節 研究範圍與限制 5
第二章 文獻探討 7
第一節 多媒體學習相關理論 7
第二節 建構主義與概念改變 18
第三節 學童「熱與溫度」另有概念之相關研究 23
第四節 靜態、動態和結合靜動態多媒體融入教學之實徵性研究 29
第五節 多媒體學習環境下空間能力對學習成就影響之相關研究 36
第三章 研究方法與設計 41
第一節 研究架構 41
第二節 研究流程 43
第三節 研究設計 44
第四節 研究對象 46
第五節 研究工具 47
第六節 實驗教學教材內容 54
第七節 資料收集與分析 60
第四章 研究結果與討論 64
第一節 靜態、動態、結合動靜態視覺表徵融入教學對自然科學習成就的影響 64
第二節 靜態、動態、結合動靜態視覺表徵融入教學對科學學習動機的影響 66
第三節 靜態、動態、結合動靜態視覺表徵融入教學對概念理解的影響 68
第四節 靜態、動態、結合動靜態視覺表徵融入教學對不同空間能力學生自然科學習成就的影響 109
第五章 結論與建議 111
參考文獻 115
一、中文部份 115
二、英文部份 116
附錄 127
附錄一 熱和溫度成就測驗 127
附錄二 熱和溫度二階式問卷 131
熱和溫度二階式問卷 131
附錄三 科學學習動機量表 135
附錄四 空間關係測驗 138
附錄五 熱和溫度開放式問卷 146
附錄六 教案設計 149

表次
表3-3-1 三種多媒體視覺表徵融入教學策略的教學特徵 45
表3-3-2 實驗設計 46
表 3-4-1 研究樣本人數 47
表3-5-1 熱和我們的生活單元目標及主要概念 47
表3-5-2 「熱和溫度成就測驗」雙向細目表 48
表3-5-3 「熱和溫度成就測驗」之難度、鑑別度分析摘要表 49
表3-5-4 二階式診斷測驗題目概念對照表 51
表3-5-5 科學學習動機量表向度題號分配 52
表3-5-6 開放式問卷概念對照表 53
表3-6-1 三組實驗組教學活動內容簡述 56
表3-7-1 二階診斷測驗概念分類檢核表 61
表3-7-2 另有概念與科學概念答題人數表 61
表3-7-3 學生前、後測驗概念理解Chi-square列聯表 61
表3-7-4 學生前後測驗另有概念答題百分比 62
表3-7-5 開放式問卷概念分類檢核表 63
表4-1-1 三組實驗組自然科學習成就測驗後測之平均數、標準差 65
表4-1-2 三組實驗組之成就後測之單因子共變數分析摘要表 65
表4-1-3 三組實驗組自然科學習成就測驗後測調整前後之平均數 65
表4-1-4 三組實驗組自然科學習成就測驗後測事後比較分析(Bonferroni)摘要表 66
表4-2-1 三組實驗組科學學習動機前測、後測分數之平均數、標準差 67
表4-2-2 三組實驗組對科學學習動機後測之單因子共變數分析摘要表 67
表4-2-3 三組實驗組對科學學習動機後測分數調整前後之平均數 68
表4-3-1 第一題前測、後測另有概念與科學概念答題人數表 69
表4-3-2 三組實驗組第一題前測概念理解Chi-square列聯表 70
表4-3-3 三組實驗組第一題後測概念理解Chi-square列聯表 70
表4-3-4 第二題前測、後測另有概念與科學概念答題人數表 71
表4-3-5 三組實驗組第二題前測概念理解Chi-square列聯表 71
表4-3-6 三組實驗組第二題後測概念理解Chi-square列聯表 72
表4-3-7 第三題前測、後測另有概念與科學概念答題人數表 73
表4-3-8 三組實驗組第三題前測概念理解Chi-square列聯表 73
表4-3-9 三組實驗組第三題後測概念理解Chi-square列聯表 73
表4-3-10 第四題前測、後測另有概念與科學概念答題人數表 74
表4-3-11 三組實驗組第四題前測概念理解Chi-square列聯表 75
表4-3-12 三組實驗組第四題後測概念理解Chi-square列聯表 75
表4-3-13 第五題前測、後測另有概念與科學概念答題人數表 76
表4-3-14 三組實驗組第五題前測概念理解Chi-square列聯表 77
表4-3-15 三組實驗組第五題後測概念理解Chi-square列聯表 77
表4-3-16 第六題前測、後測另有概念與科學概念答題人數表 78
表4-3-17 三組實驗組第六題前測概念理解Chi-square列聯表 78
表4-3-18 三組實驗組第六題後測概念理解Chi-square列聯表 79
表4-3-19 第七題前測、後測另有概念與科學概念答題人數表 80
表4-3-20 三組實驗組第七題前測概念理解Chi-square列聯表 80
表4-3-21 三組實驗組第七題後測概念理解Chi-square列聯表 81
表4-3-22 第八題前測、後測另有概念與科學概念答題人數表 82
表4-3-23 三組實驗組第八題前測概念理解Chi-square列聯表 82
表4-3-24 三組實驗組第八題後測概念理解Chi-square列聯表 83
表4-3-25 三實驗組二階後測chi-square統計整理表 84
表4-3-26三組實驗組第一題前測、後測另有概念答題人數及百分比 86
表4-3-27 三組實驗組第二題前測、後測另有概念答題人數及百分比 88
表4-3-28 三組實驗組第三題前測、後測另有概念答題人數及百分比 90
表4-3-29 三組實驗組第四題前測、後測另有概念答題人數及百分比 92
表4-3-30 三組實驗組第五題前測、後測另有概念答題人數及百分比 94
表4-3-31 三組實驗組第六題前測、後測另有概念答題人數及百分比 96
表4-3-32 三組實驗組第七題前測、後測另有概念答題人數及百分比 99
表4-3-33 三組實驗組第八題前測、後測另有概念答題人數及百分比 101
表4-3-34 三實驗組整體正向概念改變整理表 102
表4-3-36 三實驗組開放式問卷Exact Test檢定結果表 109
表4-4-1 三組實驗組高、低空間能力學生成就測驗表現之t檢定 110



圖次
圖2-1-1 認知負荷概念圖 9
圖2-1-2 雙碼論之語言系統與非語言系統模式 12
圖2-1-3:多媒體學習的認知模型(Cognitive Model of Multimedia Learning) 15
圖3-1-1 研究架構圖 41
圖3-2-1 研究流程圖 43
圖3-5-1 空間關係測驗範例 53
圖4-3-3 三組實驗組第一題各概念理解程度類型人數分布圖 104
圖4-3-4 三組實驗組第二題各概念理解程度類型人數分布圖 105
圖4-3-6三組實驗組第四題概念理解程度人數圖 106
圖4-3-7 三組實驗組第五題各概念理解程度類型人數分布圖 107
圖4-3-8 三組實驗組第六題各概念理解程度類型人數分布圖 108

參考文獻
一、中文部份
王立行(1992)。電腦輔助教學的理論與實務。資訊教育雙月刊,29,24-35。
方麗勝(2007)。以概念構圖的動態評量探究國小五年級學童"物質與熱"的概念學習。國立台北教育大學課程與教學研究所碩士論文。
石原青(2003)。小六至國三學生熱與溫度之學生概念之認知類型、層次、頻率分佈與認知發展之研究。國立高雄師範大學物理學系碩士論文。
李琛玫(1996)。資優生空間能力之相關研究。資優教育季刊,59,21-24。
宋曜廷(2000)。先前知識、文章結構與多媒體呈現對文章學習的影響。國立台灣師範大學教育心理與輔導研究所博士論文。
邱美虹(1993)。科學教科書與概念改變。科學教育月刊,163,2-8。
邱美虹(2000)。概念改變研究的省思與啟式。科學教育學刊,8(1),1-34。
邱惠芬(2003) 。多媒體介面對國小學童學習動機、學習成就及學習保留的影響。屏東師範學院教育科技研究所碩士論文。
林麗娟(民85)。多媒體電腦圖像設計與視覺記憶的關係。教學科技與媒體,28,3-12。
卓雅慰(2011)。小組合作學習模式對學生智能風險取向(IRT)影響之研究-以國小六年級自然與生活科技教學為例。國立新竹教育大學數理教育研究所碩士論文。
徐易稜(民90)。多媒體呈現方式對學習者認知負荷與學習成效之影響研究。國立中央大學資訊管理研究所碩士論文。
許民陽、殷炯盛等(1997):國小四年級學童對冷熱及溫度概念的研究,台北市立師範學院,科學教育研究與發展季刊,7,33-47。
許秋瑾(2003)。學習風格與教材呈現對國小學童學習溶液酸鹼性之研究。國立台南大學資訊教育研究所碩士論文。
范懿文、陳彙芬(2000)。認知負荷對多媒體電腦輔助學習成效之影響研究。資訊管理研究,2,45-60。
郭重吉(1988)。從認知觀點探討自然科學的學習。教育學院學報,13,352-378。
陳文典、劉德生(1994)。國小學生對熱與溫度概念的認知。科學教育學刊,2(2),77-114。
陳瓊森(1998)。從建構主義觀點談概念形成及概念轉變。國民中學學生概念學習學術研討會論文彙編,39-50。
陳彙芬(1999)。多媒體電腦輔助學習之實驗室研究-探討認知負荷對學習成效的影響。國立中央大學管理研究所碩士論文。
程文香(2002)。中小學學生的熱迷思概念與科學史發展比較之研究。台中師範學院自然科學教育學系碩士論文。
黃克文(1996)。認知負荷與個人特質及學習成就之關聯。國立台北師範學院國民教育研究所碩士論文。
曾志華(1997)。以建構論為基礎的科學教育理念。教育資料與研究,14,74-80。
張力夫(2011)。探討利用「動態表徵」與「靜態表徵」教學對概念學習成效影響之研究-以「波的重疊原理」單元為例。國立交通大學科技與數位學習所碩士論文。
張世忠(民86)。建構主義與科學教學。科學教育月刊,202,16-23。
張靜嚳(1996)。建構教學:採用建構主義如何教學?。建構與教學,7期,彰化師大科教中心。
黃柏勳(2003)。認知上的瓶頸-認知負荷理論。教育與資料研究,55,71-78。
戴文雄(1998)。不同正增強回饋刑事電腦輔助學習系統對不同認知型態與空間能力之高工學生機械製圖學習成效之研究(Ⅱ)。行政院國科會補助專題研究計畫。
劉長庚(2010)。探討動靜態圖對於八年級學生學習X-t與V-t圖的影響。國立台灣師範大學科學教育研究所碩士論文。
賴升慧 (2006)。以數位學習輔助國小五年級學童學習「溫度與熱」概念的成效研究。國立新竹教育大學人資處應用科學所碩士論文。
謝秀月(1991)。小學、師院學生熱與溫度概念的另有架構。科學教育,2,227-247。
謝嘉龍(2006)。以科學寫作診斷國小學童熱學迷思概念之研究。國立嘉義大學國民教育研究所碩士論文。


二、英文部份
Ainsworth, S. (1999) The fuctions of multiple representations. Computers & Education, 33, 131-152.
Athee, M. (1993). “A servey of Finnish pupils about thermal phenomena” in The Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Misconceptions Trust: Ithaca, NY .
Ausubel, D. P .(1968). Educational psychology: A cognitive view. New York:Holt, Rinehart, & Winston.
Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72 (2), 175-184.
Ayres, P. & Paas. F. (2007). Making instructional animations more effective: a cognitive load approach. Cognitive Psychology. 21(6), 695-700.
Baek, Y. K. & Layne, B. H. (1988). Color, graphic, and animation in computer-assisted learning tutorial lesson. Journal of Computer-Based Instruction, 15(4), 131-135.
Bar, V., & Travis, A. S. (1991). Children's views concerning phase changes. Journal of Research in Science Teaching, 28, 363-382.
Barak, M., Ashkar. T.,& Dori.Y. J. (2011). Learning science via animated movies: Its effect on students’ thinking and motivation. Computers & Education, 56, 839–846.
Barak, M. & Dori. Y.D. (2005). Enhancing undergraduate students' chemistry understanding through project-based learning in an IT environment. Science Education. 88(1), 117-139.
Barnea, N., & Dori, Y.J. (2000). Computerized molecular modeling the new technology for enhancing model perception among chemistry educators and learners. Chemistry Education: Research and Practice in Europe, 1( 1) 109-120.
Beccue, B., Vila, J. & Whitley, L.K. (2001). The Effects of Adding Audio Instructions to a Multimedia Computer Based Training Environment. Journal of Educational Multimedia and Hypermedia, 10(1), 47-67.
Blake, T. (1977). Motion in instructional media: Some subject-display mode interactions. Perceptual and Motor Skills, 44, 975-985.
Bloom, B. S. (Ed.) (1956). Taxonomy of Educational Objective:The Classification of educational goals. Handbook I: Cognitive Domain. New York: Wiley.
Bodner, G. M. and McMillen, T. L. B. (1986). Cognitive restructuring as an early stage in problem solving. Journal of Research in Science Teaching, 23, 727-737.
Brown, D. E., (1992). Using examples and analogies to remediate misconceptions in physics: Factors influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17-34.
Brown, D. E., & Clemet. J. (1989). Overcoming misconcepts via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science. 18, 237-261.
Carey, S. (1985). Conceptual change in childhood. The MIT press, Cambridge, Massachusetts.
Cate, W. M. (1993). Making the most of imagery: Theoretical issues in selecting metaphorical images. Paper presented at the meeting og the American Educational Research Association, GA.
Çepni, S., Taş, E., & Köse, S. (2006). The effects of computer-assisted material on students’
cognitive levels, misconceptions and attitudes towards science. Computers & Education,
46(2), 192-205.
Chang, C.-Y. (2001). Comparing the impacts of a problem-based computer-assisted
instruction and the direct-interactive teaching method on student science achievement.
Journal of Science Education and Technology, 10(2), 2001.
Chang, C.-Y. (2001). Comparing the impacts of a problem-based computer-assisted
instruction and the direct-interactive teaching method on student science achievement. Journal of Science Education and Technology, 10(2), 2001.
ChanLin, L. J. (1997). The effects of verbal elaboration and visual elaboration on student learning. International Journal of Instructional Media, 24(4), 333-339.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R.Giere (Ed.), Cognitive models of science:Minnesota studies in the philosophy of science (pp.129-186). Minneapolis: University of Minnesota Press.
Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43.
Chu, H. E., Treagust.D. F., Yeo. S.,& Zadnik. M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509-1534.
Clark, D. B. & Jorde. D. (2004). Helping students revise disruptive experientially supported ideas about thermodynamics: Computer visualizations and tactile models. Journal of Research in Science Teaching. 41(1),1-23.
Clark, D. B. (2006). Longitudinal conceptual change in students’ understanding of thermal equilibrium: An examination of the process of conceptual restructuring. Cognition and Instruction, 24(4), 467–563.
Cobb, P. (1988). The tension between theories of learning and instruction in mathematics education. Education psychologist, 23, 87-103.
Cohen, Sheldon; Kamarck, Tom; Mermelstein, Robin. (1983). A global measure of perceived stress. Journal of Health and Social Behavior. 24(4), 385-396.
Cohen, C. A., & Hegarty, M. (2007). Individual differences in use of external visualizations to perform an internal visualization task. Applied Cognitive Psychology, 21, 701–711.
Dalacosta, K., Kamariotaki-Paparrigopoulou.M., Palyvos J. A.,& Spyrellis. N. (2009).
Multimedia application with animated cartoons for teaching science in elementary
education. Computers & Education.52, 741–748.
de Jong, T., & Van Joolingen, W. (1998). Scientific discovery learning with computer
simulations of conceptual domains. Review of Educational Research, 68, 179–201.
Diakidoy, I.-A.N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of
text structure in science learning and conceptual change. Contemporary Educational
Psychology, 28(3), 335-356.
Dupin, J.J. & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits:
Structure and evolution. Journal of Research in Science Teaching, 24(9), 791-806.
Driver, R. (1983): The pupil as scientist. – Milton Keynes: Open University Press.
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing Scientific
Knowlege in the Classroom. Educational Researcher, 23(7), 5-12.
Driver, R. & Easley, J., (1978). Pupils and Paradigms: A Review of Literature Related to
Concept Development and Adolescent Science Studies, Studies in Science Education, 5,
61-84.
Driver, R., Guesne, E., Tiberghien, A. (1985). Some features of children's ideas and their
implications for teaching. In R. Driver, E. Guesne, & A. Tiberghien (Eds.),. Children's
ideas in science. (pp. 193-201). Milton Keynes, UK: Open University Press.
Duncan, I.M. & Johnstone, A.H., (1973). The Mole Concept, Education in Chemistry, 10,
213-214.
Duit, R. (1991). On the role of analogies and metaphors in learning science. Science
Education. 75(6), 649-672.
Erickson,G.L.(1979).Children’sconceptions of heat and temperature. Science Education, 63,
221–230.
Feher, E., & Meyer, K. R.(1992). Children's conceptions of color. Journal of Research in
Science Teaching, 29(5), 505-520.
Feuerstein, R.(1979). The Dynamic Assessment of retarded performers:The learning
potential assessment device theory, instruments, and techniques. Glenview, IL:Scott,
Foresman and Company.
Flick, L. (1991). Where concepts meet percepts: Stimulating analogical thought in children.
Science Education 75, 215–230.
Franklin, Jo. B.,& PD. D. (1992). The development, validation, and application of a two-tire
diagnostic instrumevt to detect misconceptions in the areas of force, heat, light, and
electricity. The Louisiana State Univerisity and Agricultural and Mechanical Col.
Fredette, N. & Lochhead, J. (1980). Student conceptions of simple circuits. The Physics
Teacher, 18, 194-198.
Goldberg, F.M. & McDermott, L.C. (1986). Student difficulties in understanding image
formation by a plane mirror. The Physics Teacher, November, 472-480.
Goldberg. F. M.. and McDermott, L. C. (1987). An investigation of student understanding of
the real image formed by a converging lens or concave mirror. American Jownal of
Physics 55, 108-119.
Gregourius, R. M., Santos. R., Dano. J. B.,& Gutierrez. J. J. (2010). Can animations effectively substitute for traditional teaching methods? Part I: preparation and testing of materials. Chemistry Education Research and Practice, 11, 253-261.
Gregourius, R. M., Santos. R., Dano. J. B.,& Gutierrez. J. J. (2010). Can animations
effectively substitute for traditional teaching methods? Part II: Potential for differentiated
learning. Chemistry Education Research and Practice. 11, 262–266.
Harrison, A. D., Grayson. D. J.,& Treagust. D. F. (1999). Investigating a Grade 11 Student’s
Evolving Conceptions of Heat and Temperature. Journal of research in science
teaching. 36(1), 55–87.
Hays, T. A. (1996). Spatial abilities and the effects of computer animation on short-term and
long-term comprehension. Journal of educational computing research, 14(2), 1996
139-155.
Head, J. (1986). Research into alternative framworks: promise and problems. Research in Science & Technological Education, 4(2), 203-211.
Hegarty, Mary Kriz, Sarah & Cate, Christina(2003). The Roles of Mental Animations and External Animations in Understanding Mechanical Systems.Cognition & Instructio. 21 ( 4), 325-360.

Hegarty, M.,& Kriz, S. (2008).Effects of knowledge and spatial ability on learning from animation. In R. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design. (pp. 3-29). Cambrige, England: Cambridge University Press.
Hegarty, M. (2005). Multimedia learning about physical systems. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 447–465). Cambridge, England: Cambridge University Press.
Helm, H., & Novak, J. D. (1983). Overview of the seminar. In H. Helm and J. D. Novak (chairs), Proceedings of the International Seminar on Misconception in Science and Mathematics, 1-4. Cornell University, Ithaca, New York.
Herron, J. C. 1996. Evolution of thermal sensitivity in Volvox. Ph.D. Diss., University of Washington, Seattle, Washington.
Hestenes, D.,Wells,M.,and Swackhamer, G.(1992).Forceconcept inventory.Phys.Teach. 30,141–158.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Höffler, T . N., Sumfleth, E., & Leutner, D. (2006). The role of spatial ability when learning from an instructional animation or a series of static pictures. In J. Plass (Ed.), Proceedings of the NYU Symposium on Technology and Learning, Aprial 2006. New York University.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer-Assisted Learning, 22, 392-404.
James Jadrich and Stanley L. Haan, Class simulation of thermal energy and heat, TPT 37, 98-99
Jex, H. R. (1988). Measuring mental working: Problems, progress and promises. In P. A. Hancock & N. M. Meshkati, (Eds). Human mental workload, 5-40. Amsterdam North-Holland: Elsevier.
Jonassen, D.H., Peck, K.L.& Wilson , B.G., (1999) . Learning with technology : A constructivist perspective . New Jersey : Prentice Hall.
Jonassen, D. H.(2000).Transformation learning with technology: beyond Modernism and Postmodernism or whoever controls the technology creates the reality. Educational Technology. 40(2). 21-25.
Joshua, S., & Dupin, J.J. (1987). Taking into account student conceptions in instructional strategy: An example in physics. Cognition and Instruction, 4, 117–135.
Kali, Y., & Linn, M. C. (2008). Designing Effective Visualizations for Elementary School Science. Elementary School Journal, 109(5), 181-198.
Kalyuga, S., Chandler, P., & Sweller, J. (1999). “Managing Split-Attention and Redundancy in Multimedia Instruction,” Applied Cognitive Psychology, 13, 351- 371.
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509-539.
Kim, H. (1998). Effects of animated graphics of plate tectonics on students' performance and attitudes in multimedia computer instruction. unpublished Ph.D. dissertation, The University of Texas at Austin, United States -- Texas.
Kim, S., Yoon. M., Whang. S. M., Tversky. B.,& Morrison, J .B. (2007). The effect of animation on comprehension and interest. Journal of Computer Assisted Learning, 23, 260–270.
Kim, J.-E., Han, K.-H., Jin, J., Kim, H., Kim, J.-C., Yun, S.-H., Lee, Y.-W. (2005) Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol, 71, 1701–1708.
Kühl, T., Scheiter.K, Gerjets. P.,& Gemballa. S. (2011). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education. 56, 176–187.
Kuhn, T. S. (1962, 1970). The structure of scientific revolutions. Chicago: University of Chicago Press. Cambridge: Cambridge University Press.
Laburú, C. E., Niaz. M. (2002). A Lakatosian Framework to Analyze Situations of Cognitive Conflict and Controversy in Students’ Understanding of Heat Energy and Temperature. Journal of Science Education and Technology, 11(3), 211-219.
Lai, Shu-Ling.(1998).The Effects of Visual Display on Analogies Using Computer-Based Learning. Internal Journal of Instructional Mesia, 25(2), 151-160.
Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos and A. Musgrave (Eds.), Criticism and the growth and the knowledge, 91-195.
Large, A., Beheshti, J., Breuleux, A., & Renaud, A. (1996). Effect of animation in enhancing descriptive and procedural texts in a multimedia learning environment. Journal of the American Society for Information Science, 47, 437-448.
Lecoutre, M.-P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23, 557-568.
Lee, H. (2007). Instructional design of web-based simulation for learner with different levels of spatial ability. Instructional Science, 35, 467-479.
Lee, O., & Brophy, J. (1996). Motivational patterns observed in sixth-grade science classrooms. Journal of Research in Science Teaching, 33(3), 585–610.
Lewalter, D. (2003). Cognitives trategies for learning from static and Dynamic visuals. Learning and Instruction. 13, 177–189.
Lin, S. (1993). The effects of elaboration and placement of analogies on student learning and attitude toward basic programming using computer-assisted instruction. Doctoral Dissertation, Texas Tech University.
Linn, M. C. & Petersen A. C. (1985). Emergence and characterization of sex differences in spatial ability: a metaanalysis. Child Development. 56, 1479-1498.
Lohman, D. F., Pellegrino J.W., Alderton D.L. & Regian J.W.(1984). Dimensions and components of individual differences in spatial abilities. Intelligence and Cognition: Contemporary Frames of Reference (edsS. H. Irvine & S. E. Newstead), 253–312. Martinis Nijhoff, Dordrecht.
Magnusson, S. J., Templin, M., & Boyle, R. A. (1997). Dynamic science assessment: A new approach for investigating conceptual change. The Journal of the Learning Science, 6(1), 91-142.
Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian Oscillation, Barotropic Dynamics, and North Pacific Tropical Cyclone Formation. Part I: Observations. J. Atmos. Sci., 58, 2545-2558.
Ma-Naim, C., Bar, V., and Zinn, B. (2002). Integrating microscopic macroscopic and
energetic descriptions for a Conceptual Change in Thermodynamics. European
Symposium on Conceptual Change, 3, 26-28.
Mayer, R. E. (2001). Multimedia Learning. New York: Cambridge University press.
Mayer, R.E. & Anderson, R.B. (1991). Animation need narrations : an experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83 , 484-490.
Mayer, R.E. & Anderson, R.B. (1992). The instructive animation : Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84(4),444-452.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1-19.
Mayer, R. E., & Moreno R.(2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43–52.
Mayer, R. E., Hegarty. M., Mayer. S.,& Campbell. J. (2005). When Static Media Promote Active Learning: Annotated Illustrations Versus Narrated Animations in Multimedia Instruction. 11(4), 256–265.
Marbach-Ad, M., Santos. R., B. Dano. J.,& J. Gutierrez. J. (2008). Can animations effectively substitute for traditional teaching methods? Part I: preparation and testing of materials. Chemistry Education Research and Practice. 11, 253–261.
McCloskey, M.(1983). Naïve theories of motion. In D.Gentner & A. L. Stevens (Eds.), Mental models, 299-324. Hillsdale, NJ: Lawrence Erlbaum Associates.
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influence. Psychological Bulletin, 86, 889-918.
Minstrell, J.C.(1982) Explaining the “at rest “ condition of an object .The Physics Teacher, 20, 12-14.
Moreno, R., & Mayer, R. E. (1999). “Cognitive Prnciples of Multimedia Learning: The Role of Modality and Contiguity,” Journal of Educational Psychology, 91(2), 358-368.

Najjar, L. J. (1996). Multimedia information and Information Learning. Journal of Educational Multimedia and Hyper Media, 5 , 129-150.
Novak, J. D., & Gowin, D. B. (1984).Learning how to learn. Cambridge, UK: Cambridge
University Press.
Osborne, R. J., & Gilbert, J. K. (1980). A technique for exploring students’ views of the world. Physics Education, 15 , 376-379.
Osborne, R. J. & Freyberg, P. (1985). Learning in science: The implications of children ’s science. Auckland, NZ: Heinemann.
Osborne, R. J. and Wittrock. M. C. (1983).Learning science: A generative process. Science education, 67, 489-508.
Özmen, H (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education. 57, 1114-1126.
Paas, F. G. W. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429-434.
Paas, F. G. W., & Van Merriënboer J. J. G. (1994). Variability of worked examples and transfer of geometrical problem solving: A cognitive load approach. Journal of Educational Psychology, 86,122-133.
Paas, F.,Tuovinen, J.E.,Tabbers, H., & van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71.
Paivio, A.(1971). Imagery and Verbal Processes. New York:Holt, Rinehart & Winston.
Paivio, A.(1986). Mental reoresentations:adual coding approach, Oxford, England:Oxford University Press.
Paivio, A. (1990). Mental representations: A dual coding approach: Oxford University Press, USA.
Paivio, A. (1991). Images in mind: The evolution of a theory. New York: Harvester Wheatsheaf.
Paik, S. H., Cho. B. K.,& Go. Y. M. (2007). Korean 4- to 11-Year-Old Student Conceptions of Heat and Temperature. Journal of Research in Science Teaching. 44(2), 284–302.
Park, O. C., & Gittelman, S. S. (1992). Selective use of animation and feedback in computer-based instruction. Educational Technology, Research, and Development,40(4), 27-38.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science education, 66(2),211-227.
Prain, V., & Waldrip, B. (2006). An exploratory study of teachers' and students' use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866.
Reed, S. K. (1985). Effect of computer graphic on improving estimates to Algebra word problem. Journal of Educational Psychology,77(3), 285-298.
Rebetez, C., Be ´trancourt. M., Sangin. M.,& Dillenbourg. P. (2010). Learning from animation enabled by collaboration. Instructional Science. 38, 471–485.
Rieber, L. P. & Hannafin, M. J. (1988). Effects of textual and animated orienting activities and practice on learning from computer-based instruction. Computers in the Schools, 5(1/2), 77-89.
Rieber,L.P.(1989).The effects of computer animated elaboration strategies and practice on factual and application learning in an elementary science lesson. Journal of Educational Computing Research, 5(4), 431-444.
Rieber, L P. (1990). Using Computer animated graphics in Science instruction with Children. Journal of Educational Psychology,82(1), 135-140.
Robins, S. & Mayer, R.E. (1993). Schema training in analogical reasoning. Journal of Educational Psychology, 85(3), 529-538.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.
Rosen, Y. (2009). Tth eeffects of ananimation-based on-line Learning environment on transfer of knowledge and on motivation for scienceand technology learning. Journal of educational computing research. 40(4), 451-467.
Rumelhart, D. E. & Norman, D. A. (1981). Accretion, tuning and restructuring: Three modes of learning. In R. Klatsky & J. W. Cotton (Eds.), Semantic factors in cognition. Hillsdale, NJ: Lawrence Erlbaum Associates.
Schecker, H. P.(1992). The paradigmatic change in mechanics: Implication of historical processes for physics education. Science and Education, 1(1), 71-76.
Schnotz, W. & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of animation in multimedia learning: Why reduction of cognitive load can have negative results on learning. Educational Technology Research and Development, 53, 47-58.
Shayer, M., & Wylam, H. (1981) The development of the concepts of heat and temperature in 10-13 year olds. Journal of Research in Science Teaching, 18, 419–434.
Shepherd, D. L. & Renner, J. W. (1982). Students' understandings and misunderstandings of the states of matter and density changes. School Science and Mathematics, 82(8), 650-665.
Senteni, A. (2004). Mathematics and computer-aided learning. Academic Exchange Quarterl,
22.
Strike, K. A. & Posner, G. J. (1985). A conceptual change view of learning and understanding. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change, 211-231.

Sha, L. S., & Kaufman, D. M. (2005). Managing cognitive load while playing computer games. Paper presented at the 2005 American Educational Research Association (AERA) Annual Conference.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257-285.
Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and science. Journal of Educational Psychology, 81, 457-466.
Sweller, J. (1990). On the limited evidence for the strategies. Journal for Research in Mathmatics Education, 21(5), 411-415.
Sweller, J., Van Merriënboer, J. J. G., & Paas, F G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285.
Tanahoung, C., Chitaree. R., Soankwan. C., Sharma. M. D.,& Johnston. I. D. (2009). The effect of Interactive Lecture Demonstrations on students’ understanding of heat and temperature: a study from Thailand. Research in Science & Technological Education. 27(1), 61–74.
Thurstone, L. L. (1938). Primary mental abilities. Chicago: University press.
Thurstone, T. G. (1962). PMA (Primary Mental Abilities) Grade 4-6 (rev. ed.). Chicago: Science Research Associates.
Towbridge, D.E., & McDermott, L. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American Journal of Physics, 49, 242-253.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Tobin, K., & Tippins, D. (1993). Constructivism as a referent for teaching and learning. In K., Tobin (Ed.). The practice of constructivism in science education (Preface: ix-xvi), Washington, DC: AAAS.
Treagust, D. F. ; Haslam, F. (1986). Evaluating Secondary Students' Misconceptions of Photosynthesis and Respiration in Plants Using a Two-Tier Diagnostic Instrument. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching (59th, San Francisco, CA).
Trundle, K. C.& Bell. R. L. (2010). The use of a computer simulation to promote conceptual change: Aquasi-experimentalstudy. Computers & Education. 54, 1078–1088.
Tsui, C., & Treagust, D. (2003). Learning genetics with multiple representations: A three dimensional analysis of conceptual change. The National Association for Research in Science Teaching, Philadelphia, PA, March 23-26.
Tsui, C., & Treagust, D. (2004). Conceptual change in learning genetics: An ontological perspective. Research in Science and Technological Education, 22(2ov), 185-202.
Tversky, B., Bauer-Morrison, J., & Betrancourt, M. (2002). Animation: can it facilitate? International Journal of Human-Computer Studies, 57, 247-262.

Van Merriënboer, J. J. G & Ayres, P. (2005). Research on cognitive load theory and its design implications for e-learning. Education Technology Research & Development, 53(3), 5-13.
von Glasersfeld, E. (1989), Constructivism in education, T. Husen,& N. Postlethwaite (Eds.), The international in encyclopedia of education. Supplementary Vol. 1, New York: Pergamon, 162-163.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and instruction, 4, 45-69
Wandersee, J. H, Mintzes. J. J., & Novak. J. D. (1994). Research on Alternative Conceptions in Science. In:Handbook of Research on Science Teaching and Learning,ed.Gabel G L pp.177-210.A Project of the National Science Teachers Association.New York. Macmillan Publishing Company.
Wang, T. L. (2008). Brain hemispheric preferences of fourth- and fifth-grade science teachers and students in : An investigation of the relationships to student spatial and verbal ability, student achievement, teacher and student attitudes, and teaching practice. Dissertation Abstracts International, 69(08).
White, R.,& Gunstone. R. (1992). Prediction-observation-explanation. In: R White and R Gunstone (eds), Probing understanding, 44-64. London:The Falmer Press.
Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.
Yager, R. (1991). The constructivist learning model, towards real reform in science education. The Science Teacher, 58 (6), 52-57.
Yang, E. M., Andre, T., & Greenbowe, T. Y. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25, 329–349.
Yeung, A. S., Jin, P. & Sweller, J. (1997). Cognitive load and leaner expertise: Split-attention and redundancy effects in reading with explanatory notes. Contemporary Educational Psychology, 23, 1-21.
Zacharia Z.C. & Anderson O.R. (2003). The effects of an interactive computer-based
simulation prior to performing a laboratory inquiry-based experiment on students’
conceptual understanding of physics. American Journal of Physics, 71, 618–629.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *