帳號:guest(3.15.206.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃譯陞
作者(外文):Yi-Sheng Huang
論文名稱(中文):氧化鋅摻雜鈷高壓拉曼研究
論文名稱(外文):Raman scattering study of Cobalt Doped Zinc Oxide Under High Pressure
指導教授(中文):林志明
指導教授(外文):C.M.Lin
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10025053
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:氧化鋅摻雜鈷拉曼高壓相變壓力
外文關鍵詞:Cobalt Doped Zinc OxideRamanHigh PressurePhase transition pressure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本論文利用拉曼光譜,探討氧化鋅(ZnO)及摻雜不同比例鈷(Zn1-xCoxO x=0.025(4)、0.037(1)、0.067(2))之高壓下的研究。而隨著摻雜比例的增加可以在450cm-1~500cm-1發現新的聲子振動模, 推斷是因為鈷的摻雜而產生的振動,而500cm-1~600cm-1的2B1low、A1(LO) 、E1(LO)聲子振動模越來越明顯,是因為更多Co2+取代Zn2+導致更多的不對稱性增加。另外以體積比為4:1 的甲醇(methanol)、乙醇(ethanol) (簡稱為ME)作為傳壓介質,在靜水壓下進行加壓,升壓過程中樣品會持續往高頻移動,而當加壓至(ZnO為8.87GPa,Zn0.975Co0.025O為8.32GPa,Zn0.963Co0.037O為8.19GPa,Zn0.933Co0.067O為8.10GPa)時,樣品會產生相變。而摻雜比例的增加導致相變點的提前,是因為鈷的原子半徑(1.25Å)較小於鋅的原子半徑(1.33Å),而摻雜量越多越容易使結構越軟化,而導致氧化鋅由烏采結構轉變成氯化鈉結構的相變點提前。
In this study, Raman spectroscopy, explore zinc oxide (ZnO) doped with different proportions of cobalt (Zn1-xCoxO x = 0.025 (4), 0.037 (1), 0.067 (2)) under high pressure. With the increase in doping ratio in 450cm-1 ~ 500cm-1 discover new phonon mode, because of the vibration is cobalt doped ZnO generated. The 500cm-1 ~ 600cm-1 for 2B1low, A1 (LO), E1 (LO), TA + TO phonon vibration modes and more obvious, because the more Co2 + replaces Zn2 + leads to more asymmetry. Also a volume ratio of 4:1 methanol (methanol), ethanol (ethanol) (referred to as ME) as pressure medium, on hydrostatic pressure, the sample will continue to process high frequency movement, and when pressurized to (ZnO as 8.87GPa, Zn0.975Co0.025O as 8.32GPa, Zn0.963Co0.037O as 8.19GPa, Zn0.933Co0.067O is 8.10GPa), the sample will produce phase transition. The doping ratio result in increased early phase transition, because the cobalt atomic radius (1.25Å) smaller than zinc atomic radius (1.33Å), and the structure is more likely to soften when doping the more cobalt, resulting in zinc oxide structural transition from the wurtzit to the NaCl phase in advance.
目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 氧化鋅介紹及其應用 1
1-1-1氧化鋅介紹 1
1-1-2氧化鋅應用 3
1-2 氧化鋅摻雜之影響 4
1-2-1氧化鋅摻雜 4
1-2-2導電性質 4
1-2-3光學性質 4
1-2-4鐵磁性質 5
1-3氧化鋅高壓研究 6
1-4 研究動機 6
第二章 文獻回顧 8
2-1 氧化鋅相變壓力 8
2-2理論計算氧化鋅相變 10
2-3氧化鋅拉曼光譜 12
2-4氧化鋅摻雜鈷拉曼光譜 16
第三章 儀器與實驗方法 17
3-1 樣品來源 17
3-2 熱場發射掃描式電子顯微鏡 17
3-2-1能量散佈光譜儀 18
3-3 拉曼光譜 19
3-3-1 拉曼光譜的由來 20
3-3-2 拉曼光譜三大基本要素 20
3-3-3 雷利散射與拉曼散射 21
3-3-4 拉曼散射的古典波動模型 22
3-3-5 拉曼光譜實驗 23
3-4 高壓實驗及裝置 24
3-4-1 高壓實驗技術 24
3-4-2 鑽石高壓砧 25
3-4-3 樣品室 25
3-4-4 紅寶石壓力計 27
3-4-5 傳壓介質 30
3-5 實驗流程 30
第四章 結果與討論 32
4-1 ZnO高壓拉曼光譜分析 37
4-2 Zn0.975Co0.025O高壓拉曼光譜分析 40
4-3 Zn0.963Co0.037O高壓拉曼光譜分析 43
4-4 Zn0.93Co0.07O高壓拉曼光譜分析 46
4-5 Zn1-xCoxO(x=0.025(4)、0.037(1)、0.067(2))高壓拉曼光譜分析 49
第五章 結論 51
第六章 未來工作 53
參考資料 54
[1] R. R. Reeber, J. Appl. Phys. 41, 5063 (1970)
[2] T. Sekiguchi, N, Ohashi, Y. Terada, Jpn. J. Phys., 36, 289 (1997)
[3] C. Klingshirn Prof. Dr., ChemPhysChem, 8, 6, 782–803 (2007)
[4] Mitchnick, MarkA., David Fairhurst, Sheldon R. Pinnell., Journal of the American Academy of Dermatology 40, 1, 85-90, (1999)
[5] Lin Li, Jin Zhang, Jae Ok Jo, Sanjoy Datta, Jin Kuk Kim, Materials and Design 49 922–928 (2013)
[6] A. El.Shafei, A. Abou-Okeil, Carbohydrate Polymers, 83, 2, 920-925 (2011)
[7] Lung-Chien Chen and Yao-Ming Ho, J. Phys. D: Appl. Phys., 40, 6514 (2007)
[8] Amir Moezzi, Andrew M. McDonagh, Michael B. Cortie, Chemical Engineering Journal, 185–186, 1–22, (2012)
[9] Li Gong, Jianguo Lu, Zhizhen Ye, Solar Energy Materials & Solar Cells, 94, 6, 937-941, (2010)
[10] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Sala-Salamanca-Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348, (1998).
[11] Hsin-Chun Lu, Jia-Chiuan Jou, Chun-Lung Chu, Surface and Coatings Technology, Available online, (2012)
[12] Su Cheol Gonga, Ji Geun Janga, Ho Jung Changa, Jin-Seong Parkb, Synthetic Metals, 161, 823-827, (2011)
[13] Housei Akazawa, Thin Solid Films, 526,195-200, (2012)
[14] S. Major, K.L. Chopra, Solar Energy Materials, 17, 5, 319-327, (1988)
[15] 鐘仕堯,新竹教育大學應用科學系研究所碩士論文, 2012
[16] Manoj K. Yadav, Manoranjan Ghosh, Ranjit Biswas, Arup K. Raychaudhuri, and Abhijit Mookerjee, Phys, Rev. B., 76, 195450, (2007)
[17] Phan, The-Long, and Seong-Cho Yu., J. Phys. Chem. C., 117, 6443–6453, (2013)
[18] C. Bekeny, T. Voss, B. Hilker and J. Gutowski, Journal of the Korean Physical Society., 53, 5, 2867-2869, (2008)
[19] A. Dinia, G. Schmerber, C. Mény, V. Pierron-Bohnes, and E. Beaurepaire ,J. Appl. Phys., 97, 123908 (2005)
[20] S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, and H. Takagi, H. Munekata, Phys, Rev. Lett., (1997)
[21] 黃榮俊和許華書,物理雙月刊,26期,4卷,(2004)
[22] H. Ohno, Science, 281, 951 (1998)
[23] Kazunori Sato and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys., 39, L555-L558 (2000)
[24] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys., 93,1 (2003)
[25] C. H. Bates, W. B. White, and R. Roy, Science 137, 993(1962).
[26] J. E. Jaffe, A. C. Hess, Phys. Rev. B 48, 7903-7909 (1993)
[27] F. Decremps, J. Pellicer-Porres, A. Marco Saitta, J.-C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).
[28] 林志明,超高壓技術簡介—應用於半導體相變研究,物理雙月刊20 卷5 期,中華民國87 年10 月
[29] L. Gerward and J. S. Olsen, J. Synchrotron Radiat. 2, 233 (1995)
[30] J. M. Recio, M. A. Blanco, V. Luaña, R. Pandey, L. Gerward, and J. Staun Olsen, Phys. Rev. B 58, 8949 (1998).
[31] . J. C. jamieson, Phys. Earth Planet. Inter. 3,201(1970)
[32] S. Desgreniers, Phys. Rev. B 58,14102 (1998)
[33] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, and G. M. Kalvius, Phys. Rev. B 53, 11425–11438 (1996)
[34] H. Z. Liu, Y. Ding, M. Somayazulu, J. Qian, J. Shu, D. Hausermann, H. K. Mao, Phys. Rev. B 71,4(2005)
[35] L. Wang, H. Liu, J. Qian, W. Yang, and Y. Zhao, J. Phys. Chem. C 116(3), 2074–2079 (2012)
[36] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966)
[37] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)
[38] Y.B. Zhang , S. Li , T.T. Tan , H.S. Park, Solid State Communications 137 142–145 (2006)
[39] 黃怡禎,“探討地球內部的利器──鑽石高壓砧”,科學發展,358期,2002年,10月
[40] 陳冠橋“利用高壓技術結合拉曼光譜研究質子化 thiazole 在水溶液中電荷增強 C-H…O 作用力的影響” 國立東華大學化學研究所碩士論文(2007)
[41] 林志明,“高壓砧實驗簡介-由地球密度在徑向的變化圖說起”,全華TopLine,4期,2013年,2月
[42] Ramon Cuscó, Esther Alarcón-Lladó, Jordi Ibáñez, and Luis Artús,Phys. Rev. B 75, 165202 (2007)
[43] J. S. Reparaz, L. R. Muniz, M. R. Wagner,A. R. Goñi, M. I. Alonso, A. Hoffmann, and B. K. Meyer, Phys. Lett. 96, 231906 (2010)
[44] The Long Phan1, Roger Vincent, David Cherns,Nguyen Xuan Nghia and V V Ursaki, Nanotechnology 19, 475702 (2008)
[45] The-Long Phan, Roger Vincent, David Cherns, Nguyen Huy Dan, and Seong-Cho Yu, Appl. Phys. Lett. 93, 082110 (2008)
[46] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *