帳號:guest(3.144.98.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李毅慧
作者(外文):Lee, Yi-Hui
論文名稱(中文):木糖發酵菌株之發酵特性與機制探討
論文名稱(外文):Exploration on fermentation characterization and mechanism of xylose-fermenting yeasts isolated from Taiwan
指導教授(中文):李清福
指導教授(外文):Lee, Ching-Fu
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10025005
出版年(民國):102
畢業學年度:101
語文別:中文中文
論文頁數:78
中文關鍵詞:木糖發酵抑制物耐受性木糖還原酶木糖醇去氫酶厭氧
外文關鍵詞:Xylose fermentationinhibitor toleranceXylose reductaseXylitol dehydrogenaseanaerobicScheffersomyces stipitis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
本研究自大雪山、五指山等地區193樣本中,共分離出65株具葡萄糖發酵性之木糖利用酵母菌,經分子鑑定出42株20種、另7株可歸屬為2屬5種,因與目前已描述種有明顯差異而未鑑定出種名。此65菌株併本實驗室104株相關菌株,共同進行親緣關係樹分析比對,並進行酒精發酵及高溫、酒精、水解物耐受性與抑制物酒精發酵等試驗,以篩選出具良好特性之木糖發酵菌。所有試驗菌種經半嫌氣木糖酒精發酵試驗後顯示:酒精轉換率較佳之菌株為Scheffersomyces stipitis LK11S02, LN7S32, TJ6M05, TJ22M11, EN32S01, GA1M06, Candida sp. (125) NN15S71 及Candida shehatae WE1W06,酒精產量皆可達18.1 g/l 以上,酒精轉換率為66.1-94.6%。厭氧木糖酒精發酵試驗,酒精產能最佳之菌株為S. stipitis LK11S02,發酵時間為72小時後,可達22.0 g/l,轉換率為86%。培養時間若延長至168小時產量可達23.4 g/l,轉換率則為92%。高溫耐受性試驗中,LK11S02和NN15S71菌株分別於30℃, 37℃不同溫度下,有最高酒精產量,分別為24.2和9.8 g/l,而LK11S02及其突變株—F906 於35℃高溫下,酒精產量分別為3.7 g/l, 11.7 g/l,突變株F906其酒精產量顯著高於野生菌株。另以甲酸、乙酸、呋喃甲醛、羥甲基糠醛及酒精等抑制物存在下之發酵試驗,結果顯示:S. stipitis LK11S02分別於8 g/l甲酸、2 g/l醋酸、1 g/l呋喃甲醛、1 g/l羥甲基糠醛抑制物存在下,有22.96, 18.30, 13.80, 20.37 g/l之最高酒精產量,而突變株F906, A2609於羥甲基糠醛濃度為0.25-2.5 g/l時,酒精產量只有微幅變化,突變株對羥甲基糠醛耐受性明顯高於野生菌株。過去報告中顯示,S. stipitis 對於氧氣需求非常苛刻,必須在微好氧的環境下進行木糖酒精發酵,而本研究於台灣,拉拉山樣區由土壤分離出之菌株—LK11S02是S. stipitis 目前唯一在厭氧條件下,具有木糖酒精發酵高產能之特性菌株。木糖還原酶於NADH及NADPH之KM值分別為226.87及260.42 μM,由此結果推測於XR-XDH路徑中,輔酶供需達到平衡,不需要額外注入氧氣即可使木糖代謝不中斷所致。並於高濃度水解抑制物中,保有良好木糖酒精發酵特性,可作為實際運用於工業化發展上之潛力菌株。
Abstract
This study explored the characterization of xylose-fermenting yeasts isolated from Taiwan. Sixty-five xylose-assimilating yeasts with glucose- fermenting ability from 193 samples were collected, including leaves, soil, and mushrooms from 9 counties in Taiwan. Fourty-two of these strains can be identified and classified into 20 different species and 7 unrecognized species compared with currently recognized species based on molecular characteristics. The characteristics of these strains and other 104 strains retrieved from our collection were analyzed in terms of phylogenetic relationship, ethanol fermentation, thermotolerance, ethanol-resistant and inhibitor tolerance test. The ethanol fermentation from xylose under semi-anaerobic condition for strains LK11S02, LN7S32, TJ6M05, TJ22M11, EN32S01, GA1M06, NN15S71 and WE1W06 showed at least 18.1 g/l of ethanol production and 66.1-94.6 % of ethanol yield respectively. S. stipitis LK11S02 demonstrated highest ethanol production of 22.0 g/l and yield of 86 % under anaerobic condition for 72 hrs, and 23.4 g/l of ethanol production and 92 % of yield for 168 hrs. LK11S02, NN15S71 had the highest yield of ethanol were 24.21, 9.83 g/l at 30℃ and 37℃ respectively. Furthermore, formic acid, acetic acid, furfural, hydroxymethyl furfural ethanol, were verified as inhibitors in ethanol fermentation. S. stipitis LK11S02 showed the highest ethanol yields of 22.96, 18.30, 13.80, 20.37 g/l under inhibitor presence of 8 g/l formic acid, 2 g/l acetic acid, 1 g/l furfural, 1 g/l HMF respectively. HMF concentration of 0.25-2.5 g/l did not affect ethanol production by the mutant strain F906, A2609. S. stipitis can ferment xylose only under semi-anaerobic condition, which is fasitidous in demanding oxygen concentration. But S. stipitis LK11S02 can produce ethanol from xylose under anaerobic condition, because Km value of xylose reductase with NADH and NADPH revealed 226.87 and 260.42 μM, respectively, indicating NADH is easier to be converted to NAD+ favoring the process of xylitol to D-xylose. So S. stipitis LK11S02 is an excellent candidate for xylose fermentation under anaerobic conditions. Meanwhile strain LK11S02 showed a higher tolerance in the presence of inhibitor, such as formic acid, acetic acid, furfural and HMF.
目錄
頁次
目錄 I
表目錄 III
圖目錄… Ⅳ
中文摘要 V
英文摘要 VII
壹、前言 1
一、發展替代能源的重要性 1
二、生質酒精之發展 1
三、木質纖維素結構及組成 1
四、木質纖維素酒精製程 2
五、生質酒精發酵過程中之抑制因子 4
(一)酒精 7
(二)高溫 7
(三)醋酸 7
(四)甲酸 7
(五)呋喃甲醛 8
(六)羥甲基糠醛 8
六、酒精發酵酵母菌 8
七、木糖發酵酒精代謝途徑 9
八、發酵菌株特性改良 11
九、研究動機 11
十、研究目的 12
貳、材料與方法 14
一、藥品 14
二、培養基 14
三、器材 15
四、儀器及設備 16
五、研究方法 16
(一)樣品採集 16
(二)菌種分離、純化 16
(三)菌株篩選 17
(四)菌種保存 17
(五)木糖杜罕試管發酵試驗 17
(六)分子鑑定 17
(七)親緣關係分析 19
(八)木糖酒精發酵試驗 19
(九)生長耐受性試驗 21
(十)菌株突變 23
(十一)抑制物對酒精發酵影響 23
(十二)酵素動力學 24
(十三)最適發酵條件: 25
參、結果 26
一、菌株收集 26
二、親緣關係分析 30
三、初步篩選 30
四、木糖發酵特性分析 36
五、菌株發酵特性改良 41
六、抑制物對酒精發酵影響 51
七、最適發酵條件 55
八、木糖還原酶對NADH / NADPH之親和力 63
肆、討論 65
一、不同菌株之木糖發酵產量分析 65
二、厭氧狀態下,酒精發酵產量分析 65
三、逆境壓力下,菌株耐受性結果分析 67
伍、結論 70
陸、參考文獻 71
陸、參考文獻
李清福。1986。微生物尿酸氧化酵素之生產及其應用之研究。國立中興大學食品
科學研究所碩士論文。
林玉靜。2011。土壤及有機物質中之木糖發酵菌分離、鑑定及酒精產量分析。
國立新竹教育大學應用科學系碩士班碩士學位論文。
Agbogbo, F.K., and Wenger, K.S. 2007. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Industrial Microbiology and Biotechnology. 11: 723–727.
Almeida, J.R.M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M.F. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Chemical Technology and Biotechnology. 82: 340–349.
Bajwa, P., Pinel, D., Martin, V., Trevors, J., and Lee, H. 2010. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Microbiological Methods. 81: 179-186.
Balat, M., Balat, H., and Oz, C. 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science. 34: 551-73.
Banat, I.M, Singh, D., and Marchant, R. 1996. The use of a thermotolerant fermentative Kluyveromyces marxianus IMB3 yeast strain for ethanol production. Acta Biotechnologica. 16: 215–223.
Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., and García-Cubero, M. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology. 102: 10868-10874.
Bengtsson, O., Hahn-Hägerdal, B., Gorwa-Grauslund, M. 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology For Biofuels. 2: 1-10.
Bjerre, A.B., Olesen, A.B., Fernqvist, T. 1996. Pretreatment of wheat straw using
combined wet oxidation and alkaline hydrolysis resulting in convertible
cellulose and hemicellulose. Biotechnology and Bioengineering. 49: 568-77.
Brown, S.W., Oliver, S.G., Harrison, D.E. F., and Righelato, R.C. 1981. Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect. Applied Microbiology and Biotechnolog. 11: 151-155.
Casey, E., Sedlak, M., Ho, N., and Mosier, N. 2010. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Research. 10: 385-393.
Delgenes, J.P., Moletta, R., and Navarro, J.M. 1996. Effects of lignocellulose degradation products on ethanol fermentation of glucose and xylose by Saccharomyces cerevisae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme and Microbial Technology. 19: 220–225.
Dmytruk, O., Dmytruk, K., Abbas, C., Voronovsky, A., and Sibirny, A. 2008. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microbial Cell Factories. 7: 1-8.
Du Preez, J.C., Bosch, M. and Prior, B.A.1986.The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Applied Microbiology and Biotechnology. 23: 228-233.
Fan, L.T., Lee, Y. H., and Gharpuray, M.M. 1982. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering. 23: 158-187.
García, A., Toledano, A., Serrano, L., Egüés, I., González, M., Marín, F., and Labidi, J. 2009. Characterization of lignins obtained by selective precipitation. Separation and Purification Technology. 68: 193-198.
Hahn-Hägerdal, B., Karhumaa, K., Fonseca,C., Spencer-Martins, I., and Gorwa-Grauslund, M. 2007. Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology. 74: 937-953.
Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., and Gorwa-Grauslund, M.F. 2007.
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Advances in Biochemical Engineering and Biotechnology. 108: 147–177.
Hamelinck, C.N., Hooijdonk, G.V., and Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy. 28: 384-410.
Hasunuma, T., Kyung-mo, S., Sanda, T., Yoshimura, K., Matsuda, F., and Kondo, A. 2011. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 90: 997-1004.
Hou, X., and Yao, S. 2012. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Applied Microbiology and Biotechnology. 93: 2591-2601.
Hou, X. 2011. Anaerobic xylose fermentation by Spathaspora passalidarum. Applied Microbiology and Biotechnology. 94: 205-214.
Huang, C., Lin, T., Guo, G., and Hwang, W. 2009. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology. 100: 3914-3920.
Hughes, S., Gibbons, W., Bang, S., Pinkelman, R., Bischoff, K., Slininger, P., Qureshi, N., Kurtzman, C., Liu, S., Saha, B., Jackson, J., Cotta, M., Rich, J., and Javers, J. 2012. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. Industrial Microbiology and Biotechnology. 39: 163-173.
Ismail, K., Sakamoto, T., Hatanaka, H., Hasunuma, T., and Kondo, A. 2013. Gene expression cross-profiling in genetically modified industrial Saccharomyces cerevisiae strains during high-temperature ethanol production from xylose. Biotechnology, 163: 50-60.
Kastner, J., Jones, W., and Roberts, R. 1999. Ethanol fermentation of mixed-sugars using a two-phase, fed-batch process: method to minimize D-glucose repression of Candida shehatae D-xylose fermentations. Industrial Microbiology and Biotechnology. 22: 65-70.
Krahulec, S., Klimacek, M., and Nidetzky, B. 2012. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Biotechnology. 158: 192-202.
Kumari, R., and Krishna, P. 2012. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. Bioscience and Bioengineering. 114: 622-629.
Kwon, Y., Ma, A., Li, Q., Wang, F., Zhuang, G., and Liu, C. 2011. Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis. Bioresource Technology, 102: 8099-8104.
Laplace, J.M., Delgenes, J.P., Moletta, R., and Navarro, J.M. 1991. Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Applied Microbiology and Biotechnology. 36: 158-162.
Lewis, L.Z. 2011. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Applied Microbiology and Biotechnology. 90: 809-825.
Lin, T., Huang, C., Guo, G., Hwang, W., and Huang, S. 2012. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresource Technology. 116: 314-319.
Lohmeier-Vogel1, E.M., Sopher, C.R., and Lee, H. 1998. Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. Industrial Microbiology and Biotechnology. 20: 75–81.
Lu, Y., Cheng, Y., He, X., Guo, X., and Zhang, B. 2012. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. Industrial Microbiology Biotechnology. 39: 73-80.
Lynd, L.R., Weimer, P.J., Willem, H,Z., and Pretorius, I.S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 66: 506–577.
Maiorella, B., Blanch, H.W., and Wilke, C. R.1983. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering. 25: 103-121.
Martin, M., Delgenes, J.P., Moletta, R., and Navarro, J.M. 1992. Biomass degradation products affecting xylose fermentation by Pichia stipitis and Candida shehatae. Biomass Energy. 1332-1336.
Miller, G.M. 1959. Use of dinitrosalicylic acid reagent for determination of reducing
sugar, Analytical Chemistry. 31: 426-428.
Mollapour, M., Shepherd, A., and Piper, P.W. 2008. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives. Yeast . 25: 169–177.
Mosier, N., Wyman, C., Ladisch, M., Dale, B., Elander, R., Lee, Y., and Holtzapplef, M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology . 96: 673-686.
Neves, M.A., Kimura, T., Shimizu, N., Nakajima, M. 2007. State of the art and future
trends of bioethanol production, dynamic biochemistry, process biotechnology
and molecular biology. Global Science Books. 1-13.
Nguyen, N., Suh, S., Marshall, C., and Blackwell, M. 2006. Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research. 110: 1232-1241.
Olsson, L., and Hahn-Hägerdal, B. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology. 18: 312-331.
Paffetti, D., Barberio, C., Casalone, E., Cavalieri, D., Fani, R., Fia, G., Mori, E., and Polsinelli, M. 1995. DNA fingerprinting by random amplified polymorphic DNA and restriction fragment length polymorphism is useful for yeast typing. Research in Microbiology. 146: 587-594.
Palmqvist, E., Grage, H., Meinander, N.Q., and Hahn-H¨agerdal, B. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering. 63: 46–55.
Pampulha, M.E., and Loureiro, V. 1989. Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnology Letters. 11: 269-274.
Saha, B. 2003. Hemicellulose bioconversion. Industrial Microbiology and Biotechnology. 30: 279–291.
Samokhvalov, V., Mel'nikov, G., and Ignatov,V., 2004. The role of trehalose and
glycogen in the survival of aging saccharomyces cerevisiae cells. Microbiology. 73: 378-382.
Sanchez, Ó.J., and Cardona C.A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology. 99: 5270-95.
Sarkar, N., Ghosh, S., Bannerjee, S., and Aikat, K. 2012. Bioethanol production from
agricultural wastes: An overview. Renewable Energy. 37: 19-27.
Skoog, K., and Hahn-Hägerdal, B. 1990. Effect of oxygenation on xylose fermentation by Pichia stipitis. Applied and Environmental Microbiology. 56: 3389–3394.
Slininger,P.J., Bothast, R.J., Okos, M.R., and Ladisch, M.R.1985. Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnology Letters. 7: 431-436.
Swan, T.M., and Watson, K. 1998. Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiology Letters. 169: 191–197.
Takagi, H., Takaoka, M., Kawaguchi, A., and Kubo, Y. 2005. Effect of L proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology. 71: 8656–8662.
Van Zyl, C., Prior, B.A., and du Preez, J.C. 1991. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzyme and Microbial Technology. 13: 82-86.
Verduyn, C., Kleef, R.V., Frank, J., Schreuder, H., Dijken, J.P.V., and Scheffers, W.A. 1985. Properties of the NAD (P)H-dependent xylose reductase from xylose-fermenting yeast Pichia stipitis. Biochemistry. 226: 669-677.
Walczak, E., Czaplińska, A., Barszczewski, W., Wilgosz, M., Wojtatowicz, M., and Robak, M. 2007. RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiology. 24: 305-312.
Watanabe, I., Ando, A., Nakamura, T. 2012. Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast. Industrial Microbiology and Biotechnology 39: 307-315.
Watanabe, T., Watanabe, I., Yamamoto, M., Ando, A., and Nakamura, T. 2011. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresource Technology 102: 1844-1848.
You, K.M., Rosenfield, C.L., and Knipple, D.C. 2003. Ethanol tolerance in the
yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Applied and Environmental Microbiology. 69: 1499–1503.
Zanon, J., Peres, M., and Gattás, E. 2007. Colorimetric assay of ethanol using alcohol dehydrogenase from dry baker's yeast. Enzyme and Microbial Technology. 40: 466-470.
Zheng, D., Wu, X., Tao, X., Wang, P., Li, P., Chi, X., Li, Y., Yan, Q., and Zhao, Y. 2011. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology. 102: 3020-3027.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *