帳號:guest(3.22.240.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃敬堯
作者(外文):Huang, Ching-Yao
論文名稱(中文):台灣Candida tropicalis菌株之族群結構與親緣地理
論文名稱(外文):Studies on population structure and phylogeography of Candida tropicalis isolated in Taiwan
指導教授(中文):李清福
指導教授(外文):Lee, Ching-Fu
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用科學系碩士班
學號:10025002
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:89
中文關鍵詞:Candida tropicalis多位基因座序列分型法親緣地理族群結構
外文關鍵詞:Candida tropicalisMLSTphylogeographypopulation structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:88
  • 評分評分:*****
  • 下載下載:34
  • 收藏收藏:0
中文摘要
本研究以伺機性病原酵母菌Candida tropicalis 為對象,以國內菌株為主體,配合國外菌株之比對,蒐集天然、人為干擾與臨床環境共169菌株,利用脈衝電場膠體電泳(Pulsed-field gel electrophories, PFGE)進行電泳核型(Electrophoretic karyotypes)初步分析,後續藉由隨機擴增多型性DNA (Random amplified polymorphism DNA, RAPD)與XYR1基因的分型作篩選,擇其中65株為代表,串聯MDR1、SAPT4、XYR1、ZWF1-α四段基因,以總長1705個核苷酸的序列,探討台灣C. tropicalis在臨床與環境上的族群結構與親緣地理。初步分析結果顯示:C. tropicalis可依核型差異區分為15群,各群續以RSD8為引子作隨機擴增多型性DNA分析篩選出99菌株,XYR1基因片段之序列比對結果得33型,依序列及樣品特異性擇其中65菌株作族群與親緣地理分析。族群整體之結果顯示:65個菌株共可區分為60種基因單型(Haplotype),族群內的核苷酸多樣性(Nucleotide diversity, π)為0.0062±0.004,族群間的基因單型多樣性(Haplotype diversity, h)為0.998±0.003,族群整體未偏離中性檢測結果,且有持續擴張之傾向,但兩兩族群間的分化程度與地理距離並無顯著相關,此結果顯示本菌種擴散力極強。另分子變異分析(Analysis of molecular variance, AMOVA)顯示:遺傳變異主要發生於族群內部,藉由巢狀支系分析(Nested clade analysis),可知本菌之種源來自環境,再擴散於人體。若藉GeoDis的分析可知C. tropicalis族群現今的族群結構,是經歷了鄰域擴張、地理限制導致分化,以及長距離拓殖並伴隨著後續的片斷化事件的結果。藥物敏感性試驗顯示:天然環境菌株在Fluconazole的耐受性表現有較人為干擾與臨床環境菌株低的趨勢。
Abstract
Candida tropicalis, a commensal and opportunisitic human fungal pathogen, is prevalent in clinical environment. In this study, a total of 169 C. tropicalis strains were collected from natural, anthropogenic, and clinical environment. First authenticated and preliminary typed by electrophoretic karyotyping with pulsed field gel electrophoresis (PFGE) and random amplified polymorphism DNA (RAPD) with the primer RSD8. At last, 65 strains were selected to stand for the C. tropicalis population, and a DNA sequence connected together by MDR1, SAPT4, XYR1 and ZWF1-α genes with a total length of 1705 bp were used to assess the phylogeography of C. tropicalis. There were 60 haplotypes generated from the 65 strains. The high nucleotide diversity (π=0.0062±0.004) and high haplotype diversity (h=0.998±0.003) indicated a large stable population with long evolutionary history. Genetic variation extent was not corresponded to the distance between two of populations. We guess it might be interfered by the high popupation expansion of C. tropicalis. Analysis of molecular variance (AMOVA) revealed significant genetic subdivision occurred within the population. The results of nested clade analysis suggest that C. tropicalis population originated from natural environment flowed to clinical environment as a pathogen. Forward analysis of Geodis suggested that the present population structure was a result of contiguous range expansion, restricted gene flow with isolation by distance, and long distance colonization. At the last, sensitiveity test shows that strains isolated from natural environment present lower MIC in fluconazole than that of strains from anthropogenic and clinical environment.
目 錄

目錄 I
表目錄 III
圖目錄 IV
摘要 V
Abstract VI
壹、 前言 1
貳、 文獻整理 2
一、C. tropicalis分類與特徵 2
二、C. tropicalis生態與分布 2
三、病原性與治療 2
(一) 感染性與病原性 2
(二) C. tropicalis之臨床藥物與治療 4
(三) 臨床菌株分型 4
四、微生物親緣地理 5
(一) 親緣地理簡介與研究發展 5
(二) 親緣地理分析指標與依據 5
(三) 親緣地理分析方法 7
(四) 微生物在親緣地理上的研究 7
參、 材料與方法 10
一、藥品 10
二、培養基 10
三、器材 10
四、儀器 10
五、引子 10
六、研究方法 10
(一) 菌株來源 10
(二) DNA萃取 18
(三) CHROMagar形態分型法 18
(四) 隨機擴增多型性DNA (Random amplified polymorphism DNA, RAPD)分型法 18
(五) 脈衝電場膠體電泳(Pulsed-field gel electrophories, PFGE ) 19
(六) 多位基因座序列分型法(Multi-locus sequence typing, MLST) 20
(七) 藥物敏感性試驗 20
(八) 生理生化試驗 21
(九) 資料分析 21
肆、 結果 26
一、菌株複核 26
(一) 念珠菌顯色培養基CHROMagarTM Candida 26
(二) GTG隨機擴增多型性電泳圖譜 26



二、形態與生理生化試驗 26
(一) 生理生化試驗 26
(二) 形態試驗 26
三、染色體電泳核型分析(Electrophoretic karyotypes) 26
四、隨機擴增多型性DNA (Random amplified polymorphism DNA, RAPD) 36
五、多位基因座序列分型法(Multi-locus sequence typing, MLST) 36
六、藥物敏感性試驗 45
七、族群結構與親緣地理分析 45
(一) C. tropicalis 之核苷酸鹼基組成分析 45
(二) 遺傳變異分析(Genetic variation analysis ) 45
(三) 親緣分析(Phylogenetic analysis) 57
(四) 族群結構分析(Genetic structure analysis) 62
伍、 討論 67
一、C. tropicalis族群之遺傳變異與親緣地理關係探討 67
二、C. tropicalis環境族群與臨床族群之親緣探討 69
陸、 結論 72
柒、 參考文獻 73
捌、 附錄 77
附錄一、實驗藥品清單 77
附錄二、培養基製備方式 78
附錄三、C. tropicalis菌株生理生化試驗結果 79


Allendorf, F., and Ryman, N. (2002). The role of genetics in population viability analysis. University of Chicago Press.
Avise, J.C. (2000). Phylogeography: the history and formation of species. Harvard University Press.
Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
Beheregaray, L.B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the southern hemisphere. Molecular Ecology 17, 3754–3774.
Bergemann, S.E., Smith, M.A., Parrent, J.L., Gilbert, G.S., and Garbelotto, M. (2009). Genetic population structure and distribution of a fungal polypore, Datronia caperata (Polyporaceae), in mangrove forests of central America. Journal of Biogeography 36, 266–279.
Bolard, J. (1986). How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864, 257–304.
Bonatelli, I.A.S., Zappi, D.C., Taylor, N.P., and Moraes, E.M. (2013). Usefulness of cpDNA markers for phylogenetic and phylogeographic analyses of closely-related cactus species. Genet. Mol. Res. 12.
Boonsilp, S., Thaipadungpanit, J., Amornchai, P., Wuthiekanun, V., Bailey, M.S., Holden, M.T.G., Zhang, C., Jiang, X., Koizumi, N., Taylor, K., Galloway, R., Hoffmaster, A.R., Craig, S., Smythe, L.D., Hartskeerl, R.A., Day, N.P., Chantratita, N., Feil, E.J., Aanensen, D.M., Spratt B.G., Peacock, S.J. A single multilocus sequence typing (MLST) scheme for seven pathogenic Leptospira species. PLoS Negl. Trop. Dis. 7, e1954.
Brajtburg, J., Powderly, W.G., Kobayashi, G.S., and Medoff, G. (1990). Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34, 183–188.
Brewer, M.T., and Milgroom, M.G. (2010). Phylogeography and population structure of the grape powdery mildew fungus, Erysiphe necator, from diverse Vitis species. BMC Evol. Biol. 10, 268–280.
Byrne, M., and Moran, G.F. (1994). Population divergence in the chloroplast genome of Eucalyptus nitens. Nature 73,18–28.
Chai, L.Y., Denning, D.W., and Warn, P. (2010). Candida tropicalis in human disease. Crit. Rev. Microbiol. 36, 282–298.
Chen, Y.C., Chang, S.C., Tai, H.M., Hsueh, P.R., and Luh, K.T. (2001). Molecular epidemiology of Candida colonizing critically ill patients in intensive care units. J. Formos. Med. Assoc. 100, 791–797.
Chen, Y.C., Chang, S.C., Luh, K.T., and Hsieh, W.C. (2003). Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J. Antimicrob. Chemother. 52, 71–77.
Costa, S.F., Marinho, I., Araújo, E.A., Manrique, A.E., Medeiros, E.A., and Levin, A.S. (2000). Nosocomial fungaemia: a 2-year prospective study. J. Hosp. Infect. 45, 69–72.
Dassanayake, R.S., Samaranayake, Y.H., Yau, J.J.Y., and Samaranayake, L.P. (2006). DNA fingerprinting elicited evolutionary trend of oral Candida tropicalis isolates from diverse geographic locales. Indian J. Med. Microbiol. 24, 186–194.
Davolos, D., and Pietrangeli, B. (2007). DNA sequencing and phylogenetic analysis of allergenencoding genes from airborne moulds and yeasts. Prevention Today 3, 23–35.
Dong, L., Heckel, G., Liang, W., and Zhang, Y. (2013). Phylogeography of Silver Pheasant (Lophura nycthemera L.) across China: aggregate effects of refugia, introgression and riverine barriers. Mol. Ecol. 22, 3376–3390

Eddouzi, J., Parker, J.E., Vale-Silva, L.A., Coste, A., Ischer, F., Kelly, S., Manai, M., and Sanglard, D. (2013). Molecular mechanisms of drug resistance in clinical Candida species isolated from tunisian hospitals. Antimicrob. Agents Chemother. 57, 3182–3193.
Eggimann, P., Garbino, J., and Pittet, D. (2003). Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685–702.
Ellis, D. (2002). Amphotericin B: spectrum and resistance. J. Antimicrob. Chemother. 49 Suppl 1, 7–10.
Excoffier, L., and Smouse, P.E. (1994). Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136, 343–359.
Excoffier, L., Smouse, P.E., and Quattro, J.M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Fu, Y.X., and Li, W.H. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.
Gallis, H.A., Drew, R.H., and Pickard, W.W. (1990). Amphotericin B: 30 years of clinical experience. Clin. Infect. Dis. 12, 308–329.
Grant, W. a. S., and Bowen, B.W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426.
Green, J.L., Holmes, A.J., Westoby, M., Oliver, I., Briscoe, D., Dangerfield, M., Gillings, M., and Beattie, A.J. (2004). Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750.
Hodel, R.G., and Gonzales, E. (2013). Phylogeography of sea oats (Uniola paniculata), a dune-building coastal grass in southeastern North America. J. Hered.
Horner-Devine, M.C., Lage, M., Hughes, J.B., and Bohannan, B.J.M. (2004). A taxa–area relationship for bacteria. Nature 432, 750–753.
Hsueh, P.R., Teng, L.J., Yang, P.C., Ho, S.W., and Luh, K.T. (2002). Emergence of nosocomial candidemia at a teaching hospital in Taiwan from 1981 to 2000: increased susceptibility of Candida species to fluconazole. Microb. Drug Resist. 8, 311–319.
Hudson, R.R., Slatkin, M., and Maddison, W.P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589.
Jamshidi, S., and Jamshidi, S. (2011). NTSYSpc 2.02e implementation in molecular biodata analysis (clustering, screening, and individual selection). International Conference on Environmental and Computer Science. Singapore, 19, 165–169.
Janda, J.M., and Abbott, S.L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764.
Jones, B.W., Lopez, J.E., Huttenburg, J., and Nishiguchi, M.K. (2006). Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis. Mol. Ecol. 15, 4317–4329.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
Kimura, M. (1983). Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1, 84–93.
Kurtzman, C.P., and Robnett, C.J. (1998). Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73, 331–371.
Kurtzman, C., Fell, J.W., and Boekhout, T. (2011). The Yeasts: A Taxonomic Study, 5th edn Elsevier.
Lachance, M.A., Lawrie, D., Dobson, J., and Piggott, J. (2008). Biogeography and population structure of the neotropical endemic yeast species Metschnikowia lochheadii. Antonie van Leeuwenhoek 94, 403–414.
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
Litt, M., and Luty, J.A. (1989). A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397–401.
Marchetti, O., Bille, J., Fluckiger, U., Eggimann, P., Ruef, C., Garbino, J., Calandra, T., Glauser, M.P., Täuber, M.G., Pittet, D. (2004). Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991-2000. Clin. Infect. Dis. 38, 311–320.
Maskas, S.D., and Cruzan, M.B. (2000). Patterns of intraspecific diversification in the Piriqueta caroliniana complex in southeastern North America and the Bahamas. Evolution 54, 815–827.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323.
Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New York.
Nei, M., and Tajima, F. (1983). Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105, 207–217.
Odds, F.C., and Bernaerts, R.I.A. (1994). CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 32, 1923–1929.
Pasanen, A.L., Yli-Pietilä, K., Pasanen, P., Kalliokoski, P., and Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65, 138–142.
Pfaller, M.A. (1996). Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin. Infect. Dis. 22 Suppl 2, S89–94.
Pfaller, M.A., Jones, R.N., Doern, G.V., Sader, H.S., Messer, S.A., Houston, A., Coffman, S., and Hollis, R.J. (2000). Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997-1998. Antimicrob Agents Chemother 44, 747–751.
Posada, D., Crandall, K.A., and Templeton, A.R. (2000). GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9, 487–488.
Quesada, M.P., and Cenis, J.L. (1995). Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am. J. Enol. Vitic. 46, 204–208.
Remón, N., Galán, P., Vila, M., Arribas, O., and Naveira, H. (2013). Causes and evolutionary consequences of population subdivision of an Iberian mountain lizard, Iberolacerta monticola. PLoS ONE 8, e66034.
Ruan, S.Y., and Hsueh, P.R. (2009). Invasive candidiasis: an overview from Taiwan. J. Formos. Med. Assoc. 108, 443–451.
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Schuller, D., Cardoso, F., Sousa, S., Gomes, P., Gomes, A.C., Santos, M.A.S., and Casal, M. (2012). Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 7, e32507.
Simonsen, K.L., Churchill, G.A., and Aquadro, C.F. (1995). Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141, 413–429.
Steffan, P., Vazquez, J.A., Boikov, D., Xu, C., Sobel, J.D., and Akins, R.A. (1997). Identification of Candida species by randomly amplified polymorphic DNA fingerprinting of colony lysates. J. Clin. Microbiol. 35, 2031–2039.

Sugita, T., and Nishikawa, A. (2003). Fungal identification method based on DNA sequence analysis: Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49, 531–533.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.
Tavanti, A., Davidson, A.D., Johnson, E.M., Maiden, M.C.J., Shaw, D.J., Gow, N.A.R., and Odds, F.C. (2005). Multilocus sequence typing for differentiation of strains of Candida tropicalis. J. Clin. Microbiol. 43, 5593–5600.
Templeton, A. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381–397.
Templeton, A.R., Routman, E., and Phillips, C.A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140, 767–782.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.
Walczak, E., Czaplińska, A., Barszczewski, W., Wilgosz, M., Wojtatowicz, M., and Robak, M. (2007). RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiol. 24, 305–312.
Walsh, T.J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E., and Anaissie, E. (2004). Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 10 Suppl 1, 48–66.
Warnock, D.W. (2007). Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi 48, 1–12.
Wayne, P. (2008). Reference method for broth dilution antifungal susceptibility testing of yeasts. approved standard–third edition. CLSI document M27-A3
White, T.C., Marr, K.A., and Bowden, R.A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382–402.
Wu, Y., Zhou, H., Wang, J., Li, L., Li, W., Cui, Z., Chen, X., Cen, R., Lu, J., and Cheng, Y. (2012). Analysis of the clonality of Candida tropicalis strains from a general hospital in Beijing using multilocus sequence typing. PLoS ONE 7, e47767.
Xess, I., Jain, N., Hasan, F., Mandal, P., and Banerjee, U. (2007). Epidemiology of candidemia in a tertiary care centre of north India: 5-year study. Infection 35, 256–259.
Yan, K., Zhang, Y., and Chi, Z. (2010). Distribution and diversity of Candida tropicalis strains in different marine environments. J. Ocean Univ. China 9, 139–144.
Yang, Y.L., Cheng, M.F., Wang, C.W., Wang, A.H., Cheng, W.T., Lo, H.J., and Hospitals, T. (2010). The distribution of species and susceptibility of amphotericin B and fluconazole of yeast pathogens isolated from sterile sites in Taiwan. Med. Mycol. 48, 328–334.
Yang, Y.L., Lin, C.C., Chang, T.P., Lauderdale, T.L., Chen, H.T., Lee, C.F., Hsieh, C.W., and Chen, P.C. (2012). Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS ONE 7, e34609.
Yarrow, D. (1998). Methods for the isolation, maintenance and identification of yeasts. In the yeasts, a taxonomic study. 4th edn (Kurtzman, C.P. and Fell J. W.) 77-102
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *