帳號:guest(18.227.107.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林重佑
作者(外文):Chung-Yu Lin
論文名稱(中文):在偏序度量空間中的循環弱收縮固定點定理
論文名稱(外文):Fixed point of cyclic weak contractions in partial metric spaces
指導教授(中文):陳啟銘
李俊璋
指導教授(外文):Chi-Ming Chen
Chiun-Chang Lee
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學號:10024209
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:17
中文關鍵詞:固定點循環弱收縮偏序度量空間
外文關鍵詞:Fixed pointCyclic weak contractionPartial metric spaces
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文主要是探討在完備的偏序度量空間中,一個建立在 φ,ϕ,ξ:R^+→R^+ 和 ψ:R^(+^4 )→R^+ 四個函數上的循環弱收縮函數之固定點定理。
The purpose of this paper is to study a fixed point theorem for a mapping satisfying the cyclical generalized contractive conditions based on four functions φ,ϕ,ξ:R^+→R^+ and ψ:R^(+^4 )→R^+ in complete partial metric spaces.Our results generalize and improve many recent fixed point theorems in the literature.
誌謝 i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
1 Introduction and Preliminaries 2
2 Main results 6
Example 15
References 16
[1] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., (2012), 2012.40.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3(1922), 133-181.
[3] C. Di Bari, T. Suzuki, C. Vetro, Best proximity for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790-3794.
[4] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in
metric spaces, Fixed Point Theory and Appl., (2008), Article ID 406368.
[5] M. Eslamian, A. Abkar, A fixed point theorem for generalized weakly contractive mappings in complete metric space, Ital. J. Pure Appl. Math., (In press).
[6] S. Jankovic, Z. Kadelburg, S. Radonevic, B. E. Rhoades, Best proximity point Theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 2009 (2009), Article ID 197308, 9 pages.
[7] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 74(2010), 1040-1046.
[8] E. Karapinar, I.M. Erhan, Best proximity point on different type contraction, Appl. Math. Inf. Sci., 5 (2011), 342-353.
[9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239-244.
[10] E. Karapinar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26 (2012), 777-7-82.
[11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, Vol.4 NO.1 (2003), 79-89.
[12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728 (1994) 183-197.
[13] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid Math. Univ. Trieste, 36 (2004) 17-26.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *