|
[1] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., (2012), 2012.40. [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3(1922), 133-181. [3] C. Di Bari, T. Suzuki, C. Vetro, Best proximity for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790-3794. [4] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Appl., (2008), Article ID 406368. [5] M. Eslamian, A. Abkar, A fixed point theorem for generalized weakly contractive mappings in complete metric space, Ital. J. Pure Appl. Math., (In press). [6] S. Jankovic, Z. Kadelburg, S. Radonevic, B. E. Rhoades, Best proximity point Theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 2009 (2009), Article ID 197308, 9 pages. [7] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 74(2010), 1040-1046. [8] E. Karapinar, I.M. Erhan, Best proximity point on different type contraction, Appl. Math. Inf. Sci., 5 (2011), 342-353. [9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239-244. [10] E. Karapinar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26 (2012), 777-7-82. [11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, Vol.4 NO.1 (2003), 79-89. [12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728 (1994) 183-197. [13] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid Math. Univ. Trieste, 36 (2004) 17-26. |