帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佳慧
作者(外文):Jia-Hui Lin
論文名稱(中文):鈣離子通道連續模型之數值研究
論文名稱(外文):Numerical Study of Calcium Channel by a Continuum Model
指導教授(中文):劉晉良
指導教授(外文):Jinn-Liang Liu
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學號:10024208
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:22
中文關鍵詞:鈣離子通道泊松-費米方程
外文關鍵詞:Calcium ChannelPoisson-Fermi Equation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:154
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物離子通道是一種多孔性的蛋白質。鈣離子通道則是透過控制鈣離子的濃度來取決於讓鈣離子或那裏子優先通過。而我用的模型,Poisson-Fermi Equation,是一個四階的非線性微分方程。而我們在解方程時在當中加入了空間位組(steric)和關聯效應。最後在透過中央有限差分法和牛頓法來解 Poisson-Fermi Equation。
Biological Ion channel is a kind of porous protein on cell membrane. Calcium channels preferentially conduct calcium ions. The Poisson-Fermi equation is a fourth-order nonlinear PDE that deals with both steric and correlation effects of all ions and solvent molecules involved in a model system. This equation is approximated by using the central finite difference method in three dimensions. A simplified matched interface and boundary method is used to treat jump conditions between solvent and molecular domains. Some numerical results of ionic concentration profiles are presented in this thesis.
1 Introduction .............................................3
2 The Poisson-Fermi Equation ...............................3
3 Numerical Methods and Results ............................8
3.1 The central …nite di¤erence .............................8
3.2 Matched interface and boundary method (MIB) .......... 11
3.3 Newton’s method ....................................... 15
3.4 Algorithm .............................................16
4 Unit Conversion and Physical Constants ..................18
5 Conclusions .............................................19
[1] R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987) 777-787.
[2] M. Z. Bazant, M. S. Kilic, B. D. Storey, A. Ajdari, Towards an under-standing of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Coll. Interf. Sci. 152 (2009) 48-88.
[3] M. Z. Bazant, B. D. Storey, A. A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding, Phys. Rev. Lett. 106 (2011)046102.
[4] N. Bjerrum, Die Dissoziation der starken Elektrolyte, Zeitschr. f. Elek-trochemie 24 (1918) 321-328.
[5] I. Borukhov, D. Andelman, H. Orland, Steric e叉cts in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev. Lett. 79 (1997) 435-438.
[6] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math.Comp. 31 (1977) 333-390.
[7] R.-C. Chen, J.-L. Liu, An accelerated monotone iterative method for the
quantum-corrected energy transport model, J. Comp. Phys. 227 (2008)6266-6240.
[8] I-L. Chern, J.-G. Liu, W.-C.Wang, Accurate evaluation of electrostatics for macromolecules in solution, Meth. Appl. Anal. 10 (2003) 309-328.
[9] R. S. Dembo, S. C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400-408.
[10] D. A. Doyle, J.M. Cabral, R. A. Pfuetzner, A. L. Kuo, J.M. Gulbis, S. L. Cohen, B. T. Chait, R.MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280(1998) 69.77.
[11] P. T. Ellinor, J. Yang, W.A. Sather, J. F. Zhang, R. W. Tsien, Ca2+ interactions, Neuron 15 (1995) 1121.1132.
[12] W. Geng, S. Yu, G. Wei, Treatment of charge singularities in implicit solvent models, J. Chem. Phys. 127 (2007) 114106.
[13] M. Holst, F. Saied, Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more robust and efficient methods, J. Comput. Chem. 16 (1995) 337-364.
[14] S.M. Hou, X.-D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2005) 411-445.
[15] W. Humphrey, A. Dalke, K. Schulten, VMD - Visual Molecular Dynam-ics, J. Molec. Graph. 14 (1996) 33-38.
[16] J. W. Jerome, Consistency of semiconductor modeling: An exis-tence/stability analysis for the stationary van roosbroeck system, SIAM J. Appl. Math. 45 (1985) 565-590.
[17] J.-L. Liu, Lecture Notes on Poisson-Nernst-Planck Modeling and Simu-lation of Bio-logical Ion Channels, 2012.
[18] J.-L. Liu, Numerical methods for the Poisson.Fermi equation in elec-trolytes, Journal of Computational Physics 247(2013) 88-89.
[19] J.-L. Liu, On weak residual error estimation, SIAM J. Sci. Comput. (1996) 1249-1268.
[20] J.-L. Liu, W. C. Rheinboldt, A posteriori .nite element error estimators for parametrized nonlinear boundary value problems, Numer. Funct. Anal. and Optimiz., 17 (1996), 605-637.
[21] B. Lu, J. A. McCammon, Molecular surface-free continuum model for electrodiffiusion processes, Chem. Phys. Lett. 451 (2008) 282. 286.
[22] B. Z. Lu, Y. C. Zhou, M. J. Holst, J. A. McCammon, Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications, Commun. Comput. Phys. 3 (2008) 973-1009.
[23] A. Malasics , D. Gillespie , W. Nonner , D. Henderson , B. Eisenberg ,D. Boda Biochimica et Biophysica Acta 1788 (2009) 2471.2480.
[24] J. Ortega, W. C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[25] M. F. Sanner, A. J. Olson, J. C. Spehner, Reduced surface: An efficient way to compute molecular surfaces, Biopolymers 38 (1996) 305-320.
[26] C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, New York, 1961.
[27] F.J. Sigworth, Covariance of nonstationary sodium current .uctuations at the node of Ranvier, Biophys. J. 34 (1981) 111.133.
[28] F.J. Sigworth, Voltage gating of ion channels, Q. Rev. Biophys. 27 (1994)1.40.
[29] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs,NJ, 1962.
[30] J. Yang, P. T. Ellinor,W.A. Sather, J. F. Zhang, R. W. Tsien,Molecular determinants of Ca2+selectivity and ion permeation in L-type Ca2+ channels, Nature 366 (1993) 158.161.
[31] Q. Zang, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck
solver for ion channel transport, J.Comp. Phys. 230 (2011) 5239-5262.

(此全文限內部瀏覽)
封面摘要目錄
Introduction
The Poisson-Fermi Equation
Numerical Methods and Results
Unit Conversion and Physical Constants
Conclusions
References
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *