|
References [1] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl., 1(1), (2008) 45–48. [2] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen., 57, (2000) 31–37. [3] C.M. Chen, Common fixed point theorems in complete generalized metric spaces, J. Appl. Math, Volume 2012 Article ID 945915, 14 pages. [4] C.M. Chen and W.Y. Sun, Periodic points and fixed points for the weaker (ø,ψ)-contractive mappings in complete generalized metric spaces, J. Appl.Math, Volume 2012 Article ID 856974, 7 pages. [5] C.M. Chen and C.H. Chen, Periodic points for the weak contraction mappings in complete generalized metric spaces, Fixed Point Theory and Applications,2012:79 doi:10.1186/1687-1812-2012-79. [6] P. Das, A fixed point theorem on a class of generalized metric spaces, Korea J. Math. Sci., 9, (2002) 29–33. [7] I.M Erhan, E. Karapinar and T. SekuLic, Fixed points of (ψ,ø) contractions on rectangular metric spaces, Fixed Point Theory and Applications,2012:138 doi:10.1186/1687-1812-2012-138. [8] H. Lakzian and B. Samet, Fixed points for (ψ,φ) -weakly contractive mappings in generalized metric spaces, Appl. Math. Lett., 25 (2012) 902–906. [9] D. Mihet, On Kannan fixed point principle in generalized metric spaces, J.Nonlinear Sci. Appl., 2(2), (2009) 92–96. [10] B. Samet, A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. J. Math. Anal.,26(3), (2009) 1265–1271. [11] B. Samet, Disscussion on: A fixed point theorem of Banach-Caccioppli type on a class of generalized metric spaces, Publ. Math. Debrecen., 76(4),(2010) 493–494. |