帳號:guest(18.219.199.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巫宗祐
作者(外文):Wu, Tsung-Yu
論文名稱(中文):介電層表面官能化對紅螢烯薄膜成長與其電晶體效能之影響
論文名稱(外文):Effects of Dielectric-Surface Functionalization on the Growth of Rubrene Thin Films and Their Transistor Performance
指導教授(中文):陶雨臺
楊耀文
指導教授(外文):Tao, Yu-Tai
Yang, Yaw-Wen
口試委員(中文):許千樹
口試委員(外文):Hsu, Chain-Shu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:0298235505
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:有機場效電晶體紅螢烯
外文關鍵詞:organic field-effect transistorrubrene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本論文藉由光學影像、原子力顯微影像、近緣X光吸收細微結構光譜及X光繞射等技術進行一系列表面官能化對rubrene成長影響的研究,其中以Octadecyltrichlorosilane(OTS)和4-phenylbutyltrichlorosilane(4-PBTS)的單層自組裝薄膜(self-assembled monolayer, SAM)修飾SiO2/n+-Si基材表面,觀察表面能量對rubrene成長的影響;另外以Langmuir-Blodgett(LB)的方式成長poly(N-dodecylacrylamide)(pDDA)薄膜來修飾SiO2/n+-Si基材表面,藉著改變pDDA薄膜層數和SiO2基板於LB槽的移動速率來調控表面形貌,以探討表面形貌及表面官能基對rubrene成長模式的影響。
透過光學影像及原子力顯微影像瞭解到,rubrene成長於平坦的表面可形成由束狀結構組成的球晶(spherulite)薄膜,束狀結構的面積隨著表面能量減少而增加。Rubrene成長於較平坦的pDDA薄膜時,可形成柱狀結構的薄膜;當增加pDDA薄膜的粗糙度時,成長出的rubrene薄膜中除了柱狀結構,也可觀察到片狀結構。透過近緣X光吸收細微結構光譜和X光繞射圖來分析不同rubrene薄膜的分子位向、氧化速率以及排列有序性。並將不同rubrene薄膜製成元件後量測電性效能,其結果顯示片狀結構的載子傳導效能最佳,量測到的最佳電洞遷移率為0.06 cm2V-1s-1,因此認為成長高晶相的rubrene薄膜,成長環境的表面形貌粗糙度相對於表面能量顯得較為重要。
We investigated the effects of functionalization of dielectric surface on the growth of rubrene thin films by optical microscopy, atomic force microscopy (AFM), near-edge x-ray absorption fine structure (NEXAFS), and x-ray diffraction (XRD) techniques. We used self-assembly monolayer terminated by different functional groups, including alkyl chains with octadecyltrichlorosilane (OTS) and phenyl with 4-phenylbutyltrichlorosilane (4-PBTS) to study the influence of surface energy on the growth of vacumm-deposited rubrene thin films. Moreover, we used Langmuir-Blodgett (LB) films of poly(N-dodecylacrylamide) (pDDA), an aliphatic terminated polymer, to engineer the nanometer-structured suface by varying the layer thickness and the withdrawl speed of the substrate from the trough for the study of the influence of surface morphology on the growth of rubrene thin films.
Optical microscopy and AFM images reveal the presence of rubrene spherulites composed of dendritic structure when deposited on the flatter dielectric surface bonded with different termination of SAMs. The diameters of rubrene spherulites mostly amorphous is found to increase with the decreasing surface energy of dielectric SAM-terminated surface. For nano-structured pDDA LB films, not only rubrene of pillar form but sheet form can be observed. By analyzing the chraracteristic x-ray absorption peak of NEXAFS spectra, one can assess the molecular orientation and the degree of oxidation of rubrene of three different forms. The XRD data further establish that sheet form is due to single crystal with thin-sheet appearance and the longest axis (26.86Å) of rubrene unit cell is perpendicular to the substrate surface. The thin film transistor (TFT) fabricated from thin-sheet form exhibits the highest mobility (0.06 cm2/Vs). It is argued that the that the surface morphology seems to play more important role than surface energy in producing highly crystalline rubrene.
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1 有機場效電晶體的發展歷史 1
1.2 最具潛力的有機半導體分子-紅螢烯(rubrene) 6
1.3 改變介電層表面性質以改善rubrene薄膜成長之文獻回顧 8
1.4 研究動機 10
第二章 實驗技術背景與原理簡述 12
2.1 有機薄膜場效電晶體 12
2.1.1 場效電晶體簡介 12
2.1.2 有機薄膜場效電晶體工作原理 13
2.1.3 有機薄膜場效電晶體之載子遷移率(mobility)、開關電流比(on/off ratio)與起始電壓(threshold voltage)的量測 16
2.2 LB薄膜(Langmuir-Blodgett film) 19
2.3 同步輻射光源(synchrotron radiation source)56 23
2.4 近緣X光吸收細微結構(Near-edge X-ray absorption fine structure, NEXAFS)光譜 25
2.4.1 NEXAFS光譜原理 25
2.4.2 NEXAFS量測原理 31
2.5 原子力顯微術(Atomic force microscope, AFM) 原理 36
2.6 X光繞射(X-ray diffraction, XRD) 原理 37
第三章 實驗藥品、儀器設備與步驟 41
3.1 實驗藥品 41
3.2 實驗儀器 43
3.3 以Piranha溶液清洗矽(100)單晶片 44
3.4 矽(100)單晶片表面自組裝單層分子薄膜過程 45
3.5 矽(100)單晶片表面成長LB薄膜過程 46
3.6 製作有機薄膜電晶體 47
3.6.1 真空蒸鍍系統 47
3.6.1 真空蒸鍍製備rubrene薄膜 49
3.6.2 真空蒸鍍製備金的源極和汲極電極 50
3.7 有機薄膜電晶體之量測系統與量測程序 51
3.8 AFM之量測程序 52
3.9 超高真空系統與傳送樣品 53
3.9.1 達到超高真空系統 55
3.9.2 真空系統中傳送樣品 56
3.10 NEXAFS之量測 56
3.10.1 NEXAFS之量測程序 56
3.10.2 NEXAFS之數據處理 57
第四章 實驗結果與討論 59
4.1 原子力顯微術分析修飾後矽(100)單晶片表面 60
4.1.1 未修飾與經OTS和4-PBTS修飾 60
4.1.2 經pDDA薄膜修飾 62
4.2 原子力顯微術分析rubrene成長於修飾後的矽(100)單晶片表面 67
4.2.1 Rubrene成長於未修飾與經OTS和4-PBTS修飾的矽晶片 67
4.2.2 Rubrene成長於pDDA薄膜修飾的矽晶片 75
4.3 X光繞射分析結果 80
4.4 NEXAFS分析結果 84
4.5 有機薄膜場效電晶體量測結果 93
4.6 討論 98
第五章 結論 102
第六章 參考資料 104
1. Julius, E. L. Method and apparatus for controlling electric currents. US1745175, 1930.
2. Kahng, D.; Atalla, M. M. In In IRE Solid-State Devices Research Conference Carnegie Institute of Technology, Pittsburgh PA, 1960.
3. Koezuka, H.; Tsumura, A.; Ando, T. Synthetic Metals 1987, 18, 699.
4. Farchioni, R.; Grosso, G. Organic Electronic Materials; Springer: Berlin, 2001.
5. Brütting, W. Physics of Organic Semiconductors; Wiley-VCH Verlag: Berlin, 2006.
6. Faupel, F.; Dimitrakopoulos, C.; Kahn, A.; Woll, C. Journal of Materials Research 2004, 19, 1887.
7. Zaumseil, J.; Sirringhaus, H. Chemical Reviews 2007, 107, 1296.
8. Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Chemistry of Materials 2004, 16, 4543.
9. Gelinck, G. H.; Huitema, H. E. A.; Van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; Van der Putten, J.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H.; Meijer, E. J.; Benito, E. M.; Touwslager, F. J.; Marsman, A. W.; Van Rens, B. J. E.; De Leeuw, D. M. Nature Materials 2004, 3, 106.
10. Zhou, L. S.; Wanga, A.; Wu, S. C.; Sun, J.; Park, S.; Jackson, T. N. Applied Physics Letters 2006, 88, 083502.
11. Chwang, A. B.; Rothman, M. A.; Mao, S. Y.; Hewitt, R. H.; Weaver, M. S.; Silvernail, J. A.; Rajan, K.; Hack, M.; Brown, J. J.; Chu, X.; Moro, L.; Krajewski, T.; Rutherford, N. Applied Physics Letters 2003, 83, 413.
12. Clemens, W.; Fix, I.; Ficker, J.; Knobloch, A.; Ullmann, A. Journal of Materials Research 2004, 19, 1963.
13. Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chemistry of Materials 2004, 16, 4413.
14. Rogers, J. A.; Bao, Z. N.; Raju, V. R. Applied Physics Letters 1998, 72, 2716.
15. Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.
16. Bao, Z. N.; Rogers, J. A.; Katz, H. E. Journal of Materials Chemistry 1999, 9, 1895.
17. Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T. D. Advanced Materials 2010, 22, 3778.
18. Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Advanced Materials 2010, 22, 3876.
19. Kim, C. S.; Lee, S.; Gomez, E. D.; Anthony, J. E.; Loo, Y. L. Applied Physics Letters 2008, 93, 103302.
20. Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004, 303, 1644.
21. Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Applied Physics Letters 2007, 90, 102120.
22. Zeis, R.; Besnard, C.; Siegrist, T.; Schlockermann, C.; Chi, X. L.; Kloc, C. Chemistry of Materials 2006, 18, 244.
23. da Silva, D. A.; Kim, E. G.; Bredas, J. L. Advanced Materials 2005, 17, 1072.
24. Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J. A.; Gershenson, M. E. Physical Review Letters 2004, 93, 086002.
25. Sakamoto, G.; Adachi, C.; Koyama, T.; Taniguchi, Y.; Merritt, C. D.; Murata, H.; Kafafi, Z. H. Applied Physics Letters 1999, 75, 766.
26. Podzorov, V.; Sysoev, S. E.; Loginova, E.; Pudalov, V. M.; Gershenson, M. E. Applied Physics Letters 2003, 83, 3504.
27. Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Nature 2006, 444, 913.
28. Kowarik, S.; Gerlach, A.; Sellner, S.; Schreiber, F.; Cavalcanti, L.; Konovalov, O. Phys. Rev. Lett. 2006, 96, 125504.
29. Wang, L.; Chen, S.; Liu, L.; Qi, D. C.; Gao, X. Y.; Subbiah, J.; Swaminathan, S.; Wee, A. T. S. Journal of Applied Physics 2007, 102, 063504.
30. Käfer, D.; Ruppel, L.; Witte, G.; Wôll, C. Phys. Rev. Lett. 2005, 95, 166602.
31. Kafer, D.; Witte, G. Physical Chemistry Chemical Physics 2005, 7, 2850.
32. Ribic, P. R.; Bratina, G. Journal of Physical Chemistry C 2007, 111, 18558.
33. Blüm, M.-C.; Pivetta, M.; Patthey, F.; Schneider, W.-D. Phys. Rev. B 2006, 73, 195409.
34. Blum, M. C.; Cavar, E.; Pivetta, M.; Patthey, F.; Schneider, W. D. Angewandte Chemie-International Edition 2005, 44, 5334.
35. Ribic, P. R.; Bratina, G. Surface Science 2007, 601, L25.
36. Miwa, J. A.; Cicoira, F.; Bedwani, S.; Lipton-Duffin, J.; Perepichka, D. F.; Rochefort, A.; Rosei, F. Journal of Physical Chemistry C 2008, 112, 10214.
37. Hochstrasser, R. M.; Ritchie, M. Transactions of the Faraday Society 1956, 52, 1363.
38. Mathews, N.; Fichou, D.; Menard, E.; Podzorov, V.; Mhaisalkar, S. G. Applied Physics Letters 2007, 91, 212108.
39. Mitrofanov, O.; Lang, D. V.; Kloc, C.; Wikberg, J. M.; Siegrist, T.; So, W.-Y.; Sergent, M. A.; Ramirez, A. P. Phys. Rev. Lett. 2006, 97, 166601.
40. Krellner, C.; Haas, S.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B. Phys. Rev. B 2007, 75, 245115.
41. Nakayama, Y.; Machida, S.; Minari, T.; Tsukagishi, K.; Noguchi, Y.; Ishii, H. Applied Physics Letters 2008, 93, 173305.
42. Maliakal, A. J.; Chen, J. Y. C.; So, W. Y.; Jockusch, S.; Kim, B.; Ottaviani, M. F.; Modelli, A.; Turro, N. J.; Nuckolls, C.; Ramirez, A. P. Chemistry of Materials 2009, 21, 5519.
43. Mitrofanov, O.; Kloc, C.; Siegrist, T.; Lang, D. V.; So, W. Y.; Ramirez, A. P. Applied Physics Letters 2007, 91, 212106.
44. Podzorov, V.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2004, 85, 6039.
45. Takahashi, T.; Takenobu, T.; Takeya, J.; Iwasa, Y. Appl. Phys. Lett. 2006, 88, 033505.
46. Park, S.-W.; Hwang, J. M.; Choi, J.-M.; Hwang, D. K.; Oh, M. S.; Kim, J. H.; Im, S. Applied Physics Letters 2007, 90, 153512.
47. Park, S.-W.; Jeong, S. H.; Choi, J.-M.; Hwang, J. M.; Kim, J. H.; Im, S. Applied Physics Letters 2007, 91, 033506.
48. Choi, J. M.; Jeong, S. H.; Hwang, D. K.; Im, S.; Lee, B. H.; Sung, M. M. Organic Electronics 2009, 10, 199.
49. Hsu, C. H.; Deng, J.; Staddon, C. R.; Beton, P. H. Applied Physics Letters 2007, 91, 193505.
50. Li, Z. F.; Du, J.; Tang, Q.; Wang, F.; Xu, J. B.; Yu, J. C.; Miao, Q. A. Advanced Materials 2010, 22, 3242.
51. Park, B.; In, I.; Gopalan, P.; Evans, P. G.; King, S.; Lyman, P. F. Applied Physics Letters 2008, 92, 133302.
52. Hu, W. S.; Weng, S. Z.; Tao, Y. T.; Liu, H. J.; Lee, H. Y. Organic Electronics 2008, 9, 385.
53. Mannsfeld, S. C. B.; Briseno, A. L.; Liu, S.; Reese, C.; Roberts, M. E.; Bao, Z. Advanced Functional Materials 2007, 17, 3545.
54. Newman, C. R.; Frisbie, C. D.; da Silva, D. A.; Bredas, J. L.; Ewbank, P. C.; Mann, K. R. Chemistry of Materials 2004, 16, 4436.
55. Petty, M. C. Thin Solid Films 1992, 210, 417.
56. 冼鼎昌, 神奇的光–同步輻射. 牛頓出版股份有限公司: 1999.
57. 國家同步輻射中心 http://www.nsrrc.org.tw/chinese/lightsource.aspx.
58. Stöhr, J. NEXAFS Spectroscopy; Springer-Verlag: Berlin, 1992.
59. Miyashita, T.; Mizuta, Y.; Matsuda, M. British Polymer Journal 1990, 22, 327.
60. Matsui, J.; Suzuki, T.; Mikayama, T.; Aoki, A.; Miyashita, T. Thin Solid Films 2011, 519, 1998.
61. Luo, Y.; Brun, M.; Rannou, P.; Grevin, B. physica status solidi (a) 2007, 204, 1851.
62. Zeng, X.; Zhang, D.; Duan, L.; Wang, L.; Dong, G.; Qiu, Y. Applied Surface Science 2007, 253, 6047.
63. Song, X.; Wang, L.; Fan, Q.; Wu, Y.; Wang, H.; Liu, C.; Liu, N.; Zhu, J.; Qi, D.; Gao, X.; Wee, A. T. S. Applied Physics Letters 2010, 97, 032106.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *