帳號:guest(18.188.192.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡孟學
論文名稱(中文):分析股市新聞與交易量之影響
論文名稱(外文):Analysis and Influence of Stock News and Transaction Volume
指導教授(中文):陳宜欣
口試委員(中文):陳朝欽
韓永楷
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:0297626385
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:37
中文關鍵詞:交易量新聞分析
外文關鍵詞:transaction volumenewsanalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:396
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
股票市場分析一直是個很有吸引力的題目。之前的研究提出了一些基於文本資料或是數據資料的分析機制。在這篇論文中,我們提出了一個結合文本資料與數據資料的方法去評估其對於股票市場中各產業的影響力。更有甚者,我們導入了空間概念將其融合在此方法中。我們的研究顯示了使用多面相的股票市場分析的準確度是相對高於單面相的。
The stock market analysis is always an attractive topic. Previous studies proposed some mechanisms to analyze by numerical data or textual data. In this paper, we provide a method to combine transaction volume and news to evaluate the influence on the industry level of the stock market. Furthermore, we introduce the spatial concept into the method. Our research shows that multiple perspectives analysis could have better precise accuracy than single perspectives analysis.
Chinese Abstract ii
Chinese Abstract iii
Acknowledgement iv
1. Introduction 1
2. Related Work 2
3. Methodology 5
3.1. Training module 6
3.1.1 Events extraction 6
3.1.2 Geographic conversion 23
3.2 Analysis model 25
3.2.1 Multiple regression analysis model 25
3.2.2 Naïve Bayesian analysis model 26
4. Experiment 28
4.1 Experimental Data 28
4.2 Experimental Setup 29
4.3 Experimental Results 30
5. Conclusion and Future work 34
Reference 36

[1] L. Blume, D. Easley, and M. O’Hara. Market statistics and technical analysis: The role of volume. Journal of Finance, 49(1):153-81, March 1994.
[2] B. Graham and D. Dodd, Security Analysis: Principles and Technique. McGraw-Hill Book Company, Inc., 1962.
[3] J. Bollen, H. Mao, and X.-J. Zeng. Twitter mood predicts the stock market, 2010.
[4] G. P. C. Fung, J. X. Yu, and W. Lam. Stock prediction: Integrating text mining approach using real-time news. Computational Intelligence For Financial Engineering, 2003. Proceedings. 2003 IEEE International Conference on, pages 395-402, 20-23 March 2003.
[5] G. P. C. Fung, J. X. Yu, and W. Lam. News sensitive stock trend prediction. Lecture Note in Computer Science, 2336:481-??, 2002.
[6] G. P. C. Fung, J. X. Yu, and H. Lu. The predicting power of textual information on financial markets. IEEE Intelligent Informatics Bulletin, 5(1):1-10, 2005.
[7] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the stock market (extended abstract): which measure is best? In KDD, pages 487-496, 2000.
[8] E. Gilbert and K. Karahalios. Widespread worry and the stock market. In W. W. Cohen and S. Gosling, editors, ICWSM. The AAAI Press, 2010.
[9] X. Li, X. Deng, F. Wang, and K. Dong. Empirical analysis: News impact on stock prices based one news density. In W. Fan, W. Hsu, G. I. Webb, B. Liu, C. Zhang, D. Gunopulos, and X. Wu, editors, ICDM Workshops, pages 585-592. IEEE Computer Society, 2010.
[10] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. In INFORMATION PROCESSING AND MANAGEMENT, pages 513-523, 1988.
[11] R. P. Schumaker and H. Chen. A discrete stock price prediction engine based on financial news. IEEE Computer, 43(1):51-56, 2010.
[12] B. Wüthrich, D. Permunetilleke, S. Leung, V. Cho, J. Zhang, and W. Lam. Daily prediction of major stock indices from textual WWW data. In KDD, pages 364-368, 1998.
[13] D.-H. Hsu and Y.-S. Chen, Auto-identify the influence of the events based on stock news, 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *