|
1. Feldman, B.J. and D. Feldman, The development of androgen-independent prostate cancer. Nat Rev Cancer, 2001. 1(1): p. 34-45. 2. Egger, G., et al., Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004. 429(6990): p. 457-63. 3. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010. 31(1): p. 27-36. 4. Wagner, E.J. and P.B. Carpenter, Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol, 2012. 13(2): p. 115-26. 5. Bannister, A.J. and T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res, 2011. 21(3): p. 381-95. 6. Varier, R.A. and H.T. Timmers, Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta, 2011. 1815(1): p. 75-89. 7. Bannister, A.J., R. Schneider, and T. Kouzarides, Histone methylation: dynamic or static? Cell, 2002. 109(7): p. 801-6. 8. Berry, W.L. and R. Janknecht, KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res, 2013. 73(10): p. 2936-42. 9. Coffey, K., et al., The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res, 2013. 41(8): p. 4433-46. 10. Shin, S. and R. Janknecht, Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun, 2007. 359(3): p. 742-6. 11. Wissmann, M., et al., Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol, 2007. 9(3): p. 347-53. 12. Chu, C.H., et al., KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem, 2014. 57(14): p. 5975-85. 13. Al-Ubaidi, F.L., et al., Castration therapy of prostate cancer results in downregulation of HIF-1alpha levels. Int J Radiat Oncol Biol Phys, 2012. 82(3): p. 1243-8. 14. Milosevic, M., et al., Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res, 2012. 18(7): p. 2108-14. 15. Yip, K. and R. Alonzi, Carbogen gas and radiotherapy outcomes in prostate cancer. Ther Adv Urol, 2013. 5(1): p. 25-34. 16. Fernandez, E.V., et al., Dual targeting of the androgen receptor and hypoxia-inducible factor 1alpha pathways synergistically inhibits castration-resistant prostate cancer cells. Mol Pharmacol, 2015. 87(6): p. 1006-12. 17. Wang, L., et al., Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci, 2013. 9(5): p. 472-9. 18. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 19. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 20. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33. 21. Sun, R.C. and N.C. Denko, Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab, 2014. 19(2): p. 285-92. 22. Kishton, R.J. and J.C. Rathmell, Novel therapeutic targets of tumor metabolism. Cancer J, 2015. 21(2): p. 62-9. 23. Folkman, J., The role of angiogenesis in tumor growth. Semin Cancer Biol, 1992. 3(2): p. 65-71. 24. Folkman, J., Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 2002. 29(6 Suppl 16): p. 15-8. 25. Semenza, G.L., HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol, 2001. 13(2): p. 167-71. 26. Kenneth, N.S. and S. Rocha, Regulation of gene expression by hypoxia. Biochem J, 2008. 414(1): p. 19-29. 27. Semenza, G.L., L.A. Shimoda, and N.R. Prabhakar, Regulation of gene expression by HIF-1. Novartis Found Symp, 2006. 272: p. 2-8; discussion 8-14, 33-6. 28. Mahon, P.C., K. Hirota, and G.L. Semenza, FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev, 2001. 15(20): p. 2675-86. 29. Semenza, G.L., HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell, 2001. 107(1): p. 1-3. 30. DeBerardinis, R.J., et al., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008. 7(1): p. 11-20. 31. Eigenbrodt, E., et al., Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog, 1992. 3(1-2): p. 91-115. 32. Yeung, S.J., J. Pan, and M.H. Lee, Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci, 2008. 65(24): p. 3981-99. 33. Chen, L. and H. Cui, Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int J Mol Sci, 2015. 16(9): p. 22830-55. 34. Edmunds, L.R., et al., c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem, 2015. 290(33): p. 20100. 35. Huang, L.E., Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Cell Death Differ, 2008. 15(4): p. 672-7. 36. Kim, J.W., et al., Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol, 2007. 27(21): p. 7381-93. 37. Chen, J.Q. and J. Russo, Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta, 2012. 1826(2): p. 370-84. 38. Galluzzi, L., et al., Metabolic targets for cancer therapy. Nat Rev Drug Discov, 2013. 12(11): p. 829-46. 39. Pertega-Gomes, N., et al., A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol, 2015. 236(4): p. 517-30. 40. Zhao, Y., et al., Emerging metabolic targets in cancer therapy. Front Biosci (Landmark Ed), 2011. 16: p. 1844-60. 41. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64. 42. Johansson, A., et al., Targeting castration-induced tumour hypoxia enhances the acute effects of castration therapy in a rat prostate cancer model. BJU Int, 2011. 107(11): p. 1818-24. 43. Salminen, A., K. Kaarniranta, and A. Kauppinen, Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis, 2016. 7(2): p. 180-200. 44. Wong, W.J., et al., MYC degradation under low O2 tension promotes survival by evading hypoxia-induced cell death. Mol Cell Biol, 2013. 33(17): p. 3494-504. 45. Mongiardi, M.P., et al., c-MYC inhibition impairs hypoxia response in glioblastoma multiforme. Oncotarget, 2016.
|