帳號:guest(3.147.45.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):尤湘懿
作者(外文):You, Siang Yi
論文名稱(中文):Sgo1蛋白在口腔癌的表現及其應用
論文名稱(外文):Expression and Implications of Protein Sgo1 in Oral Cancer
指導教授(中文):王慧菁
指導教授(外文):Wang, Lily Hui Ching
口試委員(中文):王雯靜
江士昇
趙瑞益
口試委員(外文):Wang, Wen Ching
Jiang, Shih Sheng
Chao, Jui-I
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:104080514
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:90
中文關鍵詞:有絲分裂口腔癌
外文關鍵詞:MitosisShugoshin-1Oral cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
口腔癌為台灣十大癌症死因之一,並且是台灣男性第四常見的癌症致命殺手。儘管近年來臨床的預防、診斷與治療方法不斷地取得進展,口腔癌的發生率與死亡率在過去幾年依舊持續攀升,病患的存活率也仍未見顯著地改善,這些事實凸顯當前亟需找尋新穎的生物標記與治療標靶以協助早期診斷與治療。Shugoshin-1(Sgo1)蛋白的主要功能是在有絲分裂時期保護姊妹染色分體著絲點區域的cohesin,確保正確的染色體分離以及維持基因組的完整性。在本篇研究中,我們比較Sgo1蛋白於七株口腔鳞狀细胞癌細胞株(OSCC)以及口腔癌變前期細胞株(DOK)中之表現,並檢測口腔疾病組織微陣列切片(tissue array)中Sgo1的表現情形。總體而言,Sgo1蛋白於口腔癌組織中有表現上升之現象。為了探討Sgo1於口腔癌細胞中所扮演的角色,我們利用siRNA剔除細胞中Sgo1的表現,並發現Sgo1缺失會引起其中五株細胞的大量死亡,但另外三株卻不然。我們根據對Sgo1缺失所產生細胞反應的敏感程度,將口腔癌細胞株分為「耐受株」與「易感株」。藉由縮時顯微攝影術,我們發現Sgo1缺失的易感細胞株會滯留在有絲分裂的狀態,最終死於有絲分裂。另外,我們也觀察到在Sgo1缺失的情形下,兩類細胞株皆伴隨著有絲分裂細胞增加以及姊妹染色分體提早分離的現象。這些結果顯示Sgo1在口腔癌細胞的有絲分裂過程是極其重要的。我們更進一步證實口腔癌細胞對Sgo1缺失的敏感程度是取決於其有絲分裂檢查點(spindle assembly checkpoint)功能之穩固性,並藉由廢除有絲分裂檢查點的功能,在易感細胞株抑制因Sgo1缺失而導致有絲分裂災變(mitotic catastrophe)。最後,藉助於迴歸分析(regression analysis),我們發現Sgo1、Bub1以及Plk-1的表現情形可望作為有絲分裂檢查點穩固性的良好指標,同時也是對Sgo1缺失的敏感程度的辨識指標。因此,我們的研究成果顯示口腔癌細胞對Sgo1之敏感性將可作為治療口腔癌的一種新的策略。
Oral cancer is one of the ten major causes of cancer death in Taiwan, ranking the fourth in men. Despite recent advances in prevention, diagnosis and treatment, the incidence and mortality of oral cancer still increased in past decades, and the overall survival rates for patients have not been improved. These highlight the urgent need for exploring novel therapeutic targets and more biomarkers for early detection and treatment. Protein Shugoshin-1 (Sgo1) functions to protect sister chromatid cohesion during mitosis and thereby ensures the fidelity of chromosome separation and the maintenance of genomic integrity. In the present study, we compared expression of Sgo1 in 7 different oral squamous cell carcinoma (OSCC) cell lines and dysplastic oral keratinocyte. The expression levels of Sgo1 were also upregulated in oral cancer tissues as revealed by tissue array, and certain OSCC cell lines. We found that the depletion of Sgo1 caused significant cell death in 5 oral cancer cell lines, but not in 3 other lines. We then categorized these cells as “resistant” and “susceptible” lines based on sensitivity to Sgo1 deficiency. Using time-lapse microscopy, we showed that susceptible cells were delayed and died in mitosis upon Sgo1 depletion. Notably, increased mitotic population and premature sister chromatid separation were detected in both resistant and susceptible lines following Sgo1 depletion. This indicates that Sgo1 is essential for mitotic progression in oral cancer cells. We demonstrated that the sensitivity to Sgo1 inhibition depends on robustness of the spindle assembly checkpoint (SAC) functionality, and the abolishment of SAC can restore mitotic catastrophe induced by Sgo1 depletion. Finally, with the help of regression analysis, we found that Sgo1, Bub1 and Plk-1 expression levels may serve as good indicator of SAC robustness and hence the sensitivity to Sgo1 depletion. Our results raise the possibility to apply Sgo1 sensitivity as a supporting therapeutic approach for treating oral cancer in the future.
Contents


Abstract 1
中文摘要 2
1. Introduction 3
1.1 Novel strategy for early detection and treatment is needed for oral cancer (OC) 3
1.2 Biological functions of shugoshin-1 (Sgo1) 4
1.3 Transcription variants of Sgo1 7
1.4 Functional role of Sgo1 in the development of different cancers 8
1.5 The general concept of spindle assembly checkpoint (SAC) and mitosis 11
1.6 Sgo1 may serve as a potential therapeutic target in OSCC 13
2. Hypothesis and specific aims 14
3. Material and methods 15
4. Results 22
4.1 Oral squamous cell carcinoma cells aberrantly express Sgo1 protein 22
4.2 Malignant and inflammatory oral tissues had high nuclear Sgo1 expression 22
4.3 The extreme extent of intercellular growth inhibition upon Sgo1 depletion enabled classification of “susceptible” and “resistant” lines 24
4.4 Depletion of Sgo1 led to mitotic cell death in susceptible lines 25
4.5 Sgo1 deficiency resulted in loss of sister chromatid cohesion in both susceptible and resistant lines 25
4.6 Sgo1 depletion caused spindle assembly checkpoint (SAC)-dependent cell death in susceptible lines 26
4.7 The responder cells had a robust SAC functionality 27
4.8 SAC robustness and endogenous Sgo1 expression level correlated with cell sensitivity to Sgo1 deficiency 27
4.9 Bub1 and Plk-1 expression level may serve as good indicator of SAC robustness and the sensitivity to Sgo1 depletion 28
4.10 Additional correlation analysis between different pairs of variables 29
5. Discussion 30
6. Figures 36
Figure 1. Expression of Sgo1 in dysplastic oral keratinocyte (DOK) and OSCC cell lines 36
Figure 2. Immunohistochemistry (IHC) revealed high nuclear expression of Sgo1 in malignant and inflammatory oral tissues 37
Figure 3. Reduction of endogenous Sgo1 protein level in cells upon Sgo1 depletion 40
Figure 4. Sgo1 depletion significantly reduced cell viability in susceptible lines 41
Figure 5. Susceptible lines underwent mitotic catastrophe upon Sgo1 depletion 42
Figure 6. Sgo1 depletion induced precocious chromosome separation in mitosis 43
Figure 7. Loss of Sgo1 increased mitotic index in both susceptible and resistant lines 44
Figure 8. Sgo1 depletion induced chromosome congression errors in OECM-1 cells 45
Figure 9. Suppression of SAC rescued susceptible lines from mitotic cell death upon Sgo1 depletion 46
Figure 10. The susceptible lines demonstrated a remarkably rising trend of mitotic index in response to nocodazole treatment with increasing concentration 47
Figure 11. IC50 of nocodazole in oral cancer cells 48
Figure 12. IC50 of BI 2536 in oral cancer cells 49
Figure 13. Correlation analysis revealed a positive correlation of Sgo1 depletion-induced growth inhibition with both SAC robustness and endogenous Sgo1 expression 50
Figure 14. Comparison of SAC component protein expression profile between susceptible and resistant lines 53
Figure 15. Model of the regulation of Sgo1 and SAC during mitosis between susceptible and resistant lines 56
Figure 16. Correlation analysis between different pairs of variables 57
7. Reference 61
8. Tables 66
9. Appendix 69

1. Barr, F.A., Sillje, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nature reviews Molecular cell biology 5, 429-440.
2. Chen, Y.J., Chang, J.T., Liao, C.T., Wang, H.M., Yen, T.C., Chiu, C.C., Lu, Y.C., Li, H.F., and Cheng, A.J. (2008). Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer science 99, 1507-1514.
3. Curry, J.M., Sprandio, J., Cognetti, D., Luginbuhl, A., Bar-ad, V., Pribitkin, E., and Tuluc, M. (2014). Tumor microenvironment in head and neck squamous cell carcinoma. Seminars in oncology 41, 217-234.
4. Cutts, R.J., Gadaleta, E., Hahn, S.A., Crnogorac-Jurcevic, T., Lemoine, N.R., and Chelala, C. (2011). The Pancreatic Expression database: 2011 update. Nucleic acids research 39, D1023-1028.
5. Davis, B.K. (1971). Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster. Molecular & general genetics : MGG 113, 251-272.
6. Dreier, M.R., Bekier, M.E., 2nd, and Taylor, W.R. (2011). Regulation of sororin by Cdk1-mediated phosphorylation. Journal of cell science 124, 2976-2987.
7. Faustino, N.A., and Cooper, T.A. (2003). Pre-mRNA splicing and human disease. Genes & development 17, 419-437.
8. Feller, L., Altini, M., and Lemmer, J. (2013). Inflammation in the context of oral cancer. Oral oncology 49, 887-892.
9. Foley, E.A., and Kapoor, T.M. (2013). Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature reviews Molecular cell biology 14, 25-37.
10. Goldstein, L.S. (1980). Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster. Chromosoma 78, 79-111.
11. Gutierrez-Caballero, C., Cebollero, L.R., and Pendas, A.M. (2012). Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends in Genetics 28, 351-360.
12. Haering, C.H., Farcas, A.M., Arumugam, P., Metson, J., and Nasmyth, K. (2008). The cohesin ring concatenates sister DNA molecules. Nature 454, 297-301.
13. Hara, K., Zheng, G., Qu, Q., Liu, H., Ouyang, Z., Chen, Z., Tomchick, D.R., and Yu, H. (2014). Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nature structural & molecular biology 21, 864-870.
14. Hauf, S., Roitinger, E., Koch, B., Dittrich, C.M., Mechtler, K., and Peters, J.M. (2005). Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS biology 3, e69.
15. Holland, A.J., and Cleveland, D.W. (2009). Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nature reviews Molecular cell biology 10, 478-487.
16. Huret, J.L., Ahmad, M., Arsaban, M., Bernheim, A., Cigna, J., Desangles, F., Guignard, J.C., Jacquemot-Perbal, M.C., Labarussias, M., Leberre, V., et al. (2013). Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic acids research 41, D920-924.
17. Indjeian, V.B., Stern, B.M., and Murray, A.W. (2005). The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130-133.
18. Iwaizumi, M., Shinmura, K., Mori, H., Yamada, H., Suzuki, M., Kitayama, Y., Igarashi, H., Nakamura, T., Suzuki, H., Watanabe, Y., et al. (2009). Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer. Gut 58, 249-260.
19. Kahyo, T., Iwaizumi, M., Shinmura, K., Matsuura, S., Nakamura, T., Watanabe, Y., Yamada, H., and Sugimura, H. (2011). A novel tumor-derived SGOL1 variant causes abnormal mitosis and unstable chromatid cohesion. Oncogene 30, 4453-4463.
20. Kao, S.Y., Chu, Y.W., Chen, Y.W., Chang, K.W., and Liu, T.Y. (2009). Detection and screening of oral cancer and pre-cancerous lesions. Journal of the Chinese Medical Association : JCMA 72, 227-233.
21. Kao, S.Y., and Lim, E. (2015). An overview of detection and screening of oral cancer in Taiwan. The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association 18, 7-12.
22. Kawashima, S.A., Yamagishi, Y., Honda, T., Ishiguro, K., and Watanabe, Y. (2010). Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172-177.
23. Kitajima, T.S., Hauf, S., Ohsugi, M., Yamamoto, T., and Watanabe, Y. (2005). Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Current biology : CB 15, 353-359.
24. Kitajima, T.S., Kawashima, S.A., and Watanabe, Y. (2004). The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510-517.
25. Kitajima, T.S., Sakuno, T., Ishiguro, K., Iemura, S., Natsume, T., Kawashima, S.A., and Watanabe, Y. (2006). Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46-52.
26. Kops, G.J., Weaver, B.A., and Cleveland, D.W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews Cancer 5, 773-785.
27. Krishna Rao, S.V., Mejia, G., Roberts-Thomson, K., and Logan, R. (2013). Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pacific journal of cancer prevention : APJCP 14, 5567-5577.
28. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921.
29. Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C., and Hermoso, M.A. (2014). Chronic inflammation and cytokines in the tumor microenvironment. Journal of immunology research 2014, 149185.
30. Lara-Gonzalez, P., Westhorpe, F.G., and Taylor, S.S. (2012). The spindle assembly checkpoint. Current biology : CB 22, R966-980.
31. Leber, B., Maier, B., Fuchs, F., Chi, J., Riffel, P., Anderhub, S., Wagner, L., Ho, A.D., Salisbury, J.L., Boutros, M., et al. (2010). Proteins required for centrosome clustering in cancer cells. Science translational medicine 2, 33ra38.
32. Lee, M.Y., Marina, M., King, J.L., and Saavedra, H.I. (2014). Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells. Cell division 9, 3.
33. Liu, H., Jia, L., and Yu, H. (2013a). Phospho-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Current biology : CB 23, 1927-1933.
34. Liu, H., Rankin, S., and Yu, H. (2013b). Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nature cell biology 15, 40-49.
35. Liu, L., Zhang, N., Liu, J., Min, J., Ma, N., Liu, N., Liu, Y., and Zhang, H. (2012). Lentivirus-mediated siRNA interference targeting SGO-1 inhibits human NSCLC cell growth. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 33, 515-521.
36. Lo, W.L., Kao, S.Y., Chi, L.Y., Wong, Y.K., and Chang, R.C. (2003). Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 61, 751-758.
37. Losada, A. (2007). Cohesin regulation: fashionable ways to wear a ring. Chromosoma 116, 321-329.
38. Losada, A. (2014). Cohesin in cancer: chromosome segregation and beyond. Nature reviews Cancer 14, 389-393.
39. Mao, L. (2012). Oral squamous cell carcinoma - progresses from risk assessment to treatment. The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association 15, 83-88.
40. Marston, A.L. (2015). Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Molecular and cellular biology 35, 634-648.
41. Matsuura, S., Kahyo, T., Shinmura, K., Iwaizumi, M., Yamada, H., Funai, K., Kobayashi, J., Tanahashi, M., Niwa, H., Ogawa, H., et al. (2013). SGOL1 variant B induces abnormal mitosis and resistance to taxane in non-small cell lung cancers. Scientific reports 3, 3012.
42. Mayr, C., and Bartel, D.P. (2009). Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684.
43. McGuinness, B.E., Hirota, T., Kudo, N.R., Peters, J.M., and Nasmyth, K. (2005). Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS biology 3, e86.
44. Moore, D.P., Page, A.W., Tang, T.T., Kerrebrock, A.W., and Orr-Weaver, T.L. (1998). The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. The Journal of cell biology 140, 1003-1012.
45. Musacchio, A. (2015). The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Current biology : CB 25, R1002-1018.
46. Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nature reviews Molecular cell biology 8, 379-393.
47. Nishiyama, T., Ladurner, R., Schmitz, J., Kreidl, E., Schleiffer, A., Bhaskara, V., Bando, M., Shirahige, K., Hyman, A.A., Mechtler, K., et al. (2010). Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143, 737-749.
48. Nishiyama, T., Sykora, M.M., Huis in 't Veld, P.J., Mechtler, K., and Peters, J.M. (2013). Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proceedings of the National Academy of Sciences of the United States of America 110, 13404-13409.
49. Rajagopalan, H., and Lengauer, C. (2004). Aneuploidy and cancer. Nature 432, 338-341.
50. Randeria, P.S., Seeger, M.A., Wang, X.Q., Wilson, H., Shipp, D., Mirkin, C.A., and Paller, A.S. (2015). siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proceedings of the National Academy of Sciences of the United States of America 112, 5573-5578.
51. Rao, C.V., Sanghera, S., Zhang, Y., Biddick, L., Reddy, A., Lightfoot, S., Janakiram, N.B., Mohammed, A., Dai, W., and Yamada, H.Y. (2016). Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice. Cancer research 76, 630-642.
52. Reshmi, S.C., and Gollin, S.M. (2005). Chromosomal instability in oral cancer cells. Journal of dental research 84, 107-117.
53. Rieder, C.L., Cole, R.W., Khodjakov, A., and Sluder, G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. The Journal of cell biology 130, 941-948.
54. Rivera, C. (2015). Essentials of oral cancer. International journal of clinical and experimental pathology 8, 11884-11894.
55. Sak, K. (2012). Chemotherapy and dietary phytochemical agents. Chemotherapy research and practice 2012, 282570.
56. Salic, A., Waters, J.C., and Mitchison, T.J. (2004). Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567-578.
57. Sandler, L., Lindsley, D.L., Nicoletti, B., and Trippa, G. (1968). Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60, 525-558.
58. Sato, H., Uzawa, N., Takahashi, K., Myo, K., Ohyama, Y., and Amagasa, T. (2010). Prognostic utility of chromosomal instability detected by fluorescence in situ hybridization in fine-needle aspirates from oral squamous cell carcinomas. BMC cancer 10, 182.
59. Saunders, W.S., Shuster, M., Huang, X., Gharaibeh, B., Enyenihi, A.H., Petersen, I., and Gollin, S.M. (2000). Chromosomal instability and cytoskeletal defects in oral cancer cells. Proceedings of the National Academy of Sciences of the United States of America 97, 303-308.
60. Scanlan, M.J., Gout, I., Gordon, C.M., Williamson, B., Stockert, E., Gure, A.O., Jager, D., Chen, Y.T., Mackay, A., O'Hare, M.J., et al. (2001). Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer immunity 1, 4.
61. Sidransky, D. (1995). Molecular genetics of head and neck cancer. Current opinion in oncology 7, 229-233.
62. Sudakin, V., Chan, G.K., and Yen, T.J. (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. The Journal of cell biology 154, 925-936.
63. Suzuki, H., Akiyama, N., Tsuji, M., Ohashi, T., Saito, S., and Eto, Y. (2006). Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell cycle 5, 1094-1101.
64. Tang, Z., Sun, Y., Harley, S.E., Zou, H., and Yu, H. (2004). Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proceedings of the National Academy of Sciences of the United States of America 101, 18012-18017.
65. Tanno, Y., Kitajima, T.S., Honda, T., Ando, Y., Ishiguro, K., and Watanabe, Y. (2010). Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes & development 24, 2169-2179.
66. Teixeira, J.H., Silva, P.M., Reis, R.M., Moura, I.M., Marques, S., Fonseca, J., Monteiro, L.S., and Bousbaa, H. (2014). An overview of the spindle assembly checkpoint status in oral cancer. BioMed research international 2014, 145289.
67. Waizenegger, I.C., Hauf, S., Meinke, A., and Peters, J.M. (2000). Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399-410.
68. Wang, L.H., Yen, C.J., Li, T.N., Elowe, S., Wang, W.C., and Wang, L.H. (2015). Sgo1 is a potential therapeutic target for hepatocellular carcinoma. Oncotarget 6, 2023-2033.
69. Wang, X., Yang, Y., and Dai, W. (2006). Differential subcellular localizations of two human Sgo1 isoforms: implications in regulation of sister chromatid cohesion and microtubule dynamics. Cell cycle 5, 635-640.
70. Wang, X., Yang, Y., Duan, Q., Jiang, N., Huang, Y., Darzynkiewicz, Z., and Dai, W. (2008). sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Developmental cell 14, 331-341.
71. Wang, Y., Liu, L., Liu, X., Zhang, H., Liu, J., Feng, B., Shang, Y., Zhou, L., Wu, K., Nie, Y., et al. (2013). Shugoshin1 enhances multidrug resistance of gastric cancer cells by regulating MRP1, Bcl-2, and Bax genes. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 34, 2205-2214.
72. Yamada, H.Y., Yao, Y., Wang, X., Zhang, Y., Huang, Y., Dai, W., and Rao, C.V. (2012). Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell cycle 11, 479-488.
73. Yang, J., Ikezoe, T., Nishioka, C., and Yokoyama, A. (2013). A novel treatment strategy targeting shugoshin 1 in hematological malignancies. Leukemia research 37, 76-82.
74. Yang, Y., Wang, X., and Dai, W. (2006). Human Sgo1 is an excellent target for induction of apoptosis of transformed cells. Cell cycle 5, 896-901.
75. Yao, Y., and Dai, W. (2012). Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell cycle 11, 2631-2642.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *