帳號:guest(18.191.222.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳知遠
作者(外文):Chen, Jhih Yuan
論文名稱(中文):電漿單晶金基板對半導體共軛高分子螢光微米球耳語廊模態之影響
論文名稱(外文):The Influence of Single-crystalline Gold Plate Substrate on the Whispering-Gallery Modes of Semiconducting Fluorescent π-Conjugated Polymer Microspheres
指導教授(中文):黃哲勳
蔡易州
指導教授(外文):Huang, Jer Shing
Tsai, Yi Chou
口試委員(中文):果尚志
黃承彬
口試委員(外文):Gwo, Shangjr
Huang, Chen Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023554
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:耳語廊模態表面電漿共振古斯-漢欣位移半導體共軛高分子螢光微米球
外文關鍵詞:Whispering-gallery ModeSurface Plasmon resonanceGoos-Hänchen shiftSemiconducting Fluorescent π-Conjugated Polymer Microspheres
相關次數:
  • 推薦推薦:0
  • 點閱點閱:420
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
當圓形或球形腔體有較高折射率時,光可藉由全反射的方式不斷的在腔體內傳遞並在特定波長下產生駐波,此現象稱為耳語廊模態。金與空氣介面可存在表面電漿波,但其波向量大於同頻率之自由電磁波,因此只有在滿足相位匹配 (動量守恆)之條件下,才能產生耦合。當球狀耳語廊共振腔被放置於金基板上時,模態將根據其偏振方向及繞轉方位之不同,在接觸點附近透過近場漸逝波與基板產生不同的交互作用。本研究主要是研究單晶金基板對自組裝有機共軛高分子螢光微米球內之耳語廊模態的影響,包含對光譜尖峰強度及位移的影響。
本研究獲致兩項結論:(1)強度方面,我們發現磁橫波耳語廊模態 (TM mode)會經由奧圖組態 (Otto configuration)耦合成金板表上的電漿波而離開共振腔,這使得光譜中相對應尖峰之強度下降。(2)光譜位移方面,我們實驗觀察到金基板使電橫波耳語廊模態 (TE mode)藍移,TM mode紅移,經由理論分析,我們將此歸因於金板對電橫波及磁橫波分別產生正及負的古斯-漢欣位移 (Goos-Hänchen shift),等同於球狀腔體圓周分別會等效縮小及放大,因此光譜尖峰分別產生藍位移及紅位移。以往僅能使用理論計算來比對標示的光譜尖峰值所對應的TE mode及TM mode,此研究顯示,亦可利用觀測其金屬表面電漿耦合以及古斯-漢欣位移兩種方式,在實驗上分辨出兩種模態。
最後,本論文也對石墨烯基板對耳語廊模態之影響做了初步探討。由於已知石墨烯對近距離偶極光源(dipole source)之消光(quenching)取決於偶極方向,偶極平行於石墨烯平面則消光效應大,反之則小。因此我們希望了解石墨烯基板對TE mode及TM mode耳語廊模態是否也具類似的消光差異。目前初步結果顯示並無觀測得到之消光差異,原因可能是因為石墨烯對偶及光源的消光機制主要為電子轉移及福斯泰能量轉移(Förster resonance energy transfer, FRET),石墨烯與耳語廊模態耦合機制明顯不同,因此沒有相似消光差異。關於石墨烯與耳語廊模態耦合機制的研究,未來仍需要更多實驗與理論計算。
Light can be totally internally reflected inside a sphere made of dielectric material with refractive index higher than the environment. At specific wavelengths, standing waves are established, forming the photonic whispering-gallery modes (WGMs). On the interface of air and gold, surface plasmons (SPs) can be excited by photons if the momentum matching condition is fulfilled. When the spherical WGM resonator is placed on the gold substrate, the evanescent near fields of the WGMs can interact with the gold substrate. Depending on the polarization and the orbiting orientation of the WGMs, the interaction can result in spectral shift and intensity variation. The influence of the gold substrate on the WGM is of fundamental interest and practical importance when the sphere is to be connected to metallic electrodes for photoelectric effects. In this thesis, we investigate the influence of single-crystalline gold substrate on the WGMs of self-assembled semiconducting fluorescent π-conjugated polymer microspheres. In particular, we focus on the effects on WGM peak intensity and spectral shift. For peak intensity, we found that all peaks and the broadband fluorescence background in the emission spectrum are enhanced by the gold substrate. However, the intensity of transverse magnetic (TM) WGMs is usually lower than the corresponding transverse electric (TE) modes. This is found to stem from the WGM-to-SP coupling of the TM modes via Otto configuration. As for the spectral shift, we have observed that gold substrate results in blue shift of TE modes and red shift of TM modes. While for ITO substrate, both TE and TM show red shift. With theoretical and numerical analysis, we attribute the red and blue shift of the TM and TE mode to the negative and positive Goos-Hänchen shift on the gold substrate, respectively. The negative and positive Goos-Hänchen shifts correspond to effective enlargement and shrinkage of the sphere circumference and thus the red-shifted and blue-shifted peak positions, respectively. Typically, the assignment of TE and TM modes relies on theoretical analysis. This study shows that by identifying the metal surface plasmon coupling effect and the Goos-Hänchen shifts, the assignment of TE and TM mode can also be done experimentally.
Finally, the influence of the graphene substrate on the whispering gallery mode is discussed. Graphene is known to be an efficient quencher and the quenching effect depends on the dipole orientation with respect to the graphene surface. Dipoles parallel to the graphene plane are quenched much more effectively than those perpendicular to the surface. Therefore, it is interesting to know if graphene substrate has different quenching effects on the TE and TM modes. The preliminary results show that there is no observable difference. This might be due to the fact that the coupling of WGMs to graphene substrate is different from that of dipole sources to graphene. The details of the influence of graphene on WGMs require further experimental and theoretical works.
第1章 原理 1
1.1 半導體共軛高分子 1
1.1.1 共軛高分子 1
1.1.2 螢光放光 2
1.1.3 有機半導體雷射 4
1.2 耳語廊模態 5
1.2.1 光在介電質球中傳遞 6
1.2.2 耳語廊模態特徵頻率 11
1.3 古斯-漢欣位移 13
1.4 表面電漿子 16
1.4.1 電磁波的傳遞 17
1.4.2 金屬表面電漿子模式 19
1.4.3 激發表面電漿子 23
第2章 實驗架設與步驟 26
2.1 模擬架設 26
2.1.1 時域有限差分法 26
2.1.2 模擬設定 26
2.1.3 耳語廊模態共振光譜 28
2.1.4 耳語廊模態共振電場圖 30
2.1.5 耳語廊模態電場傳遞 31
2.2 樣品合成及光學架設 33
2.2.1 螢光微米球合成方法 33
2.2.2 單晶金片合成 34
2.2.3 樣品製備 36
2.2.4 奈米棋盤格及圓環結構 38
2.2.5 單層石墨烯製備 38
2.2.6 光學架設 41
第3章 實驗結果與討論 44
3.1 螢光增益 44
3.2 基板對螢光微米球內耳語廊模態之影響 47
3.2.1 耳語廊模態實驗及模擬光譜 47
3.2.2 耳語廊模態電場圖 50
3.2.3 耳語廊模態電場傳遞 52
3.2.4 耳語廊模態實驗結果 55
3.3 耳語廊模態產生之表面電漿波 60
3.4 基板對耳語廊模態之光譜位移 63
3.5 石墨烯對耳語廊模態之影響 68
第4章 結論與未來展望 70
參考文獻 72

1. J. C. W. Chien, “Polyacetylene: Chemistry, Physics, and Material Science”, Academic Press, Orlando (1984).
2. J. W. Blatchford et al., Photoluminescence in pyridine-based polymers: Role of aggregates. Physical Review B 54, 9180-9189 (1996).
3. H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers,Wiley, New York (1997).
4. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature, 397, 121.(1999).
5. A. Kraft, A. C. Grimsdale, A. B. Holmes, Electroluminescent conjugated polymersÐseeing polymers in a new light, Angew. Chem. Int. Ed., 37, 402 (1998).
6. H. Sirringhaus, N. Tessler, R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 280, 1741-1744 (1998).
7. J. W. Blatchford et al., Photoluminescence in pyridine-based polymers: Role of aggregates, Physical Review B 54, 9180-9189 (1996).
8. T.-Q. Nguyen, V. Doan, B. J. Schwartz, Conjugated polymer aggregates in solution: control of interchain interactions. The Journal of chemical physics 110, 4068-4078 (1999).
9. Jabłoński, Aleksander, Efficiency of Anti-Stokes Fluorescence in Dyes, Nature 131, 839-840 (1993).
10. J. W. Strutt, The Theory of Sound, Dover, New York (1945).
11. Stratton, Julius Adams. Electromagnetic theory, John Wiley & Sons (2007).
12. A. B. Matsko, V. S. Ilchenko, Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron 12, 3 (2006).
13. M. D. McGehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid‐state lasers. Advanced Materials 12, 1655-1668 (2000).
14. T. Kobayashi, W. J. Blau, H. Tillmann, H. H. Horhold, Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber. IEEE Journal of Quantum Electronics 39, 664-672 (2003).
15. S. V. Frolov, M. Shkunov, Z. V. Vardeny, K. Yoshino, Ring microlasers from conducting polymers. Physical Review B 56, R4363-R4366 (1997).
16. M. Berggren, A. Dodabalapur, Z. Bao, R. E. Slusher, Solid‐state droplet laser made from an organic blend with a conjugated polymer emitter. Advanced Materials 9, 968-971 (1997).
17. M. Humar, S. H. Yun, Intracellular microlasers. Nature photonics, (2015).
18. J. Zhang et al., Engineering the Absorption and Field Enhancement Properties of Au–TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS nano 10, 4496-4503 (2016).
19. P. Wang et al., Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano letters 15, 7581-7586 (2015).
20. J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials 23, 1272-1276 (2011).
21. K. Tabata et al., Self-assembled conjugated polymer spheres as fluorescent microresonators. Scientific reports 4 (2014).
22. S. Kushida et al., Whispering gallery resonance from self-assembled microspheres of highly fluorescent isolated conjugated polymers. Macromolecules 48, 3928-3933 (2015).
23. M. R. Gartia, M. Lu, G. L. Liu, Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves. Plasmonics 8, 361-368 (2013).
24. R. Cole et al., Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Physical review letters 97, 137401 (2006).
25. J. Li et al., Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS applied materials & interfaces 6, 10469-10475 (2014).
26. M. Jiang et al., Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Optics express 22, 23836-23850 (2014).
27. R. S. Moirangthem et al., Optical cavity modes of a single crystalline zinc oxide microsphere. Optics express 21, 3010-3020 (2013).
28. Debye, P. Der Lichtdruck auf Kugeln von beliebigem, Material. Ann. Physik 30, 57–136 (1909).
29. A. N. Oraevsky, Whispering-gallery waves. Quantum Electronics 32, 377-400 (2002).
30. F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436, 333–346 (1947).
31. K. W. Chiu and J. J. Quinn, On the Goos-H¨anchen effect: A simple example of time delay scattering process, Am. J. Phys. 40, 1847–1851 (1972).
32. R. F. Gragg, The total reflection of a compact wave group: long-range trasmission in a waveguide, Am. J. Phys.56, 1092–1094 (1988).
33. W. J. Wild and C. L. Giles, Goos-H¨anchen shift from absorbing media, Phys. Rev. A. 25, 2099–2101 (1982).
34. H.Wolter, Untersuchungen zur Strahlversetzung bei Totalreflexion des Lichtes mit der Methode der Minimumstrahlkennzeichnung, Z. Naturforsch. 5a, 143–153 (1950).
35. W. J. Wild and C. L. Giles, Goos-H¨anchen shift from absorbing media, Phys. Rev. A. 25, 2099–2101 (1982).
36. H. M. Lai, and S. W. Chan, Large and negative Goos-H¨anchen shift near the Brewster dip on reflection from weakly absorbing media, Opt. Lett. 27, 680–682 (2002).
37. M. Merano, A. Aiello, M. Van Exter, E. Eliel, J. Woerdman, Observation of Goos-Hänchen shifts in metallic reflection. Optics express 15, 15928-15934 (2007).
38. Zayats, A.V., I.I. Smolyaninov and A.A. Maradudin, Nano-optics of surface plasmon polaritons, Physics Reports 408, 131-314 (2005).
39. Pitarke, J.M., V.M. Silkin, E.V. Chulkov and P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 70, 1-87 (2007).
40. Nie, S. and S.R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
41. Chen, C., N. Hayazawa and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat Commun 5, 3312 (2014).
42. Oulton, R.F., V.J. Sorger, D.A. Genov, D.F.P. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2, 496-500 (2008).
43. Dai, W.H., F.C. Lin, C.B. Huang and J.S. Huang, Mode conversion in high-definition plasmonic optical nanocircuits, Nano Lett. 14, 3881-3886 (2014).
44. J. Butet, P.-F. Brevet, O. J. Martin, Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS nano 9, 10545-10562 (2015).
45. Butet, J., P.-F. Brevet and O.J.F. Martin, Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications, ACS Nano 9, 10545-10562 (2015).
46. Juan, M.L., M. Righini and R. Quidant, Plasmon nano-optical tweezers, Nature Photonics 5, 349-356 (2011).
47. Huang, J.-S. and Y.-T. Yang, Origin and Future of Plasmonic Optical Tweezers, Nanomaterials 5, 1048-1065 (2015).
48. 邱國斌, 蔡定平, 金屬表面電漿簡介, 物理雙月刊 28, 472-485 (2006).
49. 吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊 28, 486-496 (2006).
50. Zhang, J., L. Zhang and W. Xu, Surface plasmon polaritons: physics and applications, J. Phys. D: Appl. Phys. 45, 113001 (2012).
51. R. W. Wood, XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6 4, 396-402 (1902).
52. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, Local Excitation, Scattering, and Interference of Surface Plasmons. Physical Review Letters 77, 1889-1892 (1996).
53. E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968).
54. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398-410 (1968).
55. Deng, Y. and G. Liu, "Surface plasmons resonance detection based on the attenuated total reflection geometry," Procedia Engineering 7, 432-435 (2010).
56. T. Adachi et al., Spherical assemblies from π-conjugated alternating copolymers: Toward optoelectronic colloidal crystals. Journal of the American Chemical Society 135, 870-876 (2013).
57. S. Kushida et al., Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer. ACS nano 10, 5543–5549 (2016).
58. Huang, J.S., V. Callegari, P. Geisler, C. Bruning, J. Kern, J.C. Prangsma, et al., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry, Nat Commun 1, 150 (2010).
59. P. Leung, C. Chen, H.-P. Chiang, Large negative Goos–Hanchen shift at metal surfaces. Optics communications 276, 206-208 (2007).
60. L. Chen et al., Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Optics letters 32, 1432-1434 (2007).
61. B. Zhao, L. Gao, Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites. Optics express 17, 21433-21441 (2009).
62. K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
63. A. Ferrari et al., Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *