|
1. J. C. W. Chien, “Polyacetylene: Chemistry, Physics, and Material Science”, Academic Press, Orlando (1984). 2. J. W. Blatchford et al., Photoluminescence in pyridine-based polymers: Role of aggregates. Physical Review B 54, 9180-9189 (1996). 3. H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers,Wiley, New York (1997). 4. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature, 397, 121.(1999). 5. A. Kraft, A. C. Grimsdale, A. B. Holmes, Electroluminescent conjugated polymersÐseeing polymers in a new light, Angew. Chem. Int. Ed., 37, 402 (1998). 6. H. Sirringhaus, N. Tessler, R. H. Friend, Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 280, 1741-1744 (1998). 7. J. W. Blatchford et al., Photoluminescence in pyridine-based polymers: Role of aggregates, Physical Review B 54, 9180-9189 (1996). 8. T.-Q. Nguyen, V. Doan, B. J. Schwartz, Conjugated polymer aggregates in solution: control of interchain interactions. The Journal of chemical physics 110, 4068-4078 (1999). 9. Jabłoński, Aleksander, Efficiency of Anti-Stokes Fluorescence in Dyes, Nature 131, 839-840 (1993). 10. J. W. Strutt, The Theory of Sound, Dover, New York (1945). 11. Stratton, Julius Adams. Electromagnetic theory, John Wiley & Sons (2007). 12. A. B. Matsko, V. S. Ilchenko, Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron 12, 3 (2006). 13. M. D. McGehee, A. J. Heeger, Semiconducting (conjugated) polymers as materials for solid‐state lasers. Advanced Materials 12, 1655-1668 (2000). 14. T. Kobayashi, W. J. Blau, H. Tillmann, H. H. Horhold, Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber. IEEE Journal of Quantum Electronics 39, 664-672 (2003). 15. S. V. Frolov, M. Shkunov, Z. V. Vardeny, K. Yoshino, Ring microlasers from conducting polymers. Physical Review B 56, R4363-R4366 (1997). 16. M. Berggren, A. Dodabalapur, Z. Bao, R. E. Slusher, Solid‐state droplet laser made from an organic blend with a conjugated polymer emitter. Advanced Materials 9, 968-971 (1997). 17. M. Humar, S. H. Yun, Intracellular microlasers. Nature photonics, (2015). 18. J. Zhang et al., Engineering the Absorption and Field Enhancement Properties of Au–TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS nano 10, 4496-4503 (2016). 19. P. Wang et al., Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano letters 15, 7581-7586 (2015). 20. J. Grandidier, D. M. Callahan, J. N. Munday, H. A. Atwater, Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials 23, 1272-1276 (2011). 21. K. Tabata et al., Self-assembled conjugated polymer spheres as fluorescent microresonators. Scientific reports 4 (2014). 22. S. Kushida et al., Whispering gallery resonance from self-assembled microspheres of highly fluorescent isolated conjugated polymers. Macromolecules 48, 3928-3933 (2015). 23. M. R. Gartia, M. Lu, G. L. Liu, Surface plasmon coupled whispering gallery mode for guided and free-space electromagnetic waves. Plasmonics 8, 361-368 (2013). 24. R. Cole et al., Easily coupled whispering gallery plasmons in dielectric nanospheres embedded in gold films. Physical review letters 97, 137401 (2006). 25. J. Li et al., Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity. ACS applied materials & interfaces 6, 10469-10475 (2014). 26. M. Jiang et al., Graphene induced high-Q hybridized plasmonic whispering gallery mode microcavities. Optics express 22, 23836-23850 (2014). 27. R. S. Moirangthem et al., Optical cavity modes of a single crystalline zinc oxide microsphere. Optics express 21, 3010-3020 (2013). 28. Debye, P. Der Lichtdruck auf Kugeln von beliebigem, Material. Ann. Physik 30, 57–136 (1909). 29. A. N. Oraevsky, Whispering-gallery waves. Quantum Electronics 32, 377-400 (2002). 30. F. Goos and H. Hänchen, Ein neuer und fundamentaler Versuch zur Totalreflexion, Ann. Phys. 436, 333–346 (1947). 31. K. W. Chiu and J. J. Quinn, On the Goos-H¨anchen effect: A simple example of time delay scattering process, Am. J. Phys. 40, 1847–1851 (1972). 32. R. F. Gragg, The total reflection of a compact wave group: long-range trasmission in a waveguide, Am. J. Phys.56, 1092–1094 (1988). 33. W. J. Wild and C. L. Giles, Goos-H¨anchen shift from absorbing media, Phys. Rev. A. 25, 2099–2101 (1982). 34. H.Wolter, Untersuchungen zur Strahlversetzung bei Totalreflexion des Lichtes mit der Methode der Minimumstrahlkennzeichnung, Z. Naturforsch. 5a, 143–153 (1950). 35. W. J. Wild and C. L. Giles, Goos-H¨anchen shift from absorbing media, Phys. Rev. A. 25, 2099–2101 (1982). 36. H. M. Lai, and S. W. Chan, Large and negative Goos-H¨anchen shift near the Brewster dip on reflection from weakly absorbing media, Opt. Lett. 27, 680–682 (2002). 37. M. Merano, A. Aiello, M. Van Exter, E. Eliel, J. Woerdman, Observation of Goos-Hänchen shifts in metallic reflection. Optics express 15, 15928-15934 (2007). 38. Zayats, A.V., I.I. Smolyaninov and A.A. Maradudin, Nano-optics of surface plasmon polaritons, Physics Reports 408, 131-314 (2005). 39. Pitarke, J.M., V.M. Silkin, E.V. Chulkov and P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 70, 1-87 (2007). 40. Nie, S. and S.R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). 41. Chen, C., N. Hayazawa and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat Commun 5, 3312 (2014). 42. Oulton, R.F., V.J. Sorger, D.A. Genov, D.F.P. Pile and X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2, 496-500 (2008). 43. Dai, W.H., F.C. Lin, C.B. Huang and J.S. Huang, Mode conversion in high-definition plasmonic optical nanocircuits, Nano Lett. 14, 3881-3886 (2014). 44. J. Butet, P.-F. Brevet, O. J. Martin, Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS nano 9, 10545-10562 (2015). 45. Butet, J., P.-F. Brevet and O.J.F. Martin, Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications, ACS Nano 9, 10545-10562 (2015). 46. Juan, M.L., M. Righini and R. Quidant, Plasmon nano-optical tweezers, Nature Photonics 5, 349-356 (2011). 47. Huang, J.-S. and Y.-T. Yang, Origin and Future of Plasmonic Optical Tweezers, Nanomaterials 5, 1048-1065 (2015). 48. 邱國斌, 蔡定平, 金屬表面電漿簡介, 物理雙月刊 28, 472-485 (2006). 49. 吳民耀, 劉威志, 表面電漿子理論與模擬, 物理雙月刊 28, 486-496 (2006). 50. Zhang, J., L. Zhang and W. Xu, Surface plasmon polaritons: physics and applications, J. Phys. D: Appl. Phys. 45, 113001 (2012). 51. R. W. Wood, XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6 4, 396-402 (1902). 52. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl, Local Excitation, Scattering, and Interference of Surface Plasmons. Physical Review Letters 77, 1889-1892 (1996). 53. E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23, 2135-2136 (1968). 54. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216, 398-410 (1968). 55. Deng, Y. and G. Liu, "Surface plasmons resonance detection based on the attenuated total reflection geometry," Procedia Engineering 7, 432-435 (2010). 56. T. Adachi et al., Spherical assemblies from π-conjugated alternating copolymers: Toward optoelectronic colloidal crystals. Journal of the American Chemical Society 135, 870-876 (2013). 57. S. Kushida et al., Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer. ACS nano 10, 5543–5549 (2016). 58. Huang, J.S., V. Callegari, P. Geisler, C. Bruning, J. Kern, J.C. Prangsma, et al., Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry, Nat Commun 1, 150 (2010). 59. P. Leung, C. Chen, H.-P. Chiang, Large negative Goos–Hanchen shift at metal surfaces. Optics communications 276, 206-208 (2007). 60. L. Chen et al., Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Optics letters 32, 1432-1434 (2007). 61. B. Zhao, L. Gao, Temperature-dependent Goos-Hänchen shift on the interface of metal/dielectric composites. Optics express 17, 21433-21441 (2009). 62. K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009). 63. A. Ferrari et al., Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006). |