帳號:guest(3.22.61.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳敬霖
作者(外文):Chen, Ching Lin
論文名稱(中文):無金屬自由基加成反應以苯胺基丁烯酮及烯烴合成苯基胺二酮與環化加成反應以雙烯基苯及亞硝基苯合成異噁唑衍生物
論文名稱(外文):Metal-Free Radical Addition to Diketone via Propenone with Alkene and Cycloaddition of Dienylbenzene and Nitrosobenzene to Isoxazole Derivatives
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):李文泰
謝仁傑
口試委員(外文):Li, Wen-Tai
Hsieh, Jen-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:104023541
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:177
中文關鍵詞:無金屬環化自由基加成反應苯基胺二酮
外文關鍵詞:Metal-freecyclizationradical addition reaction2-substituted-3-oxo-N-phenylbutanamide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:322
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
第一章
經由自由基加成反應,以烯烴與添普調控所單離出之苯胺基丁烯酮基質((E)-4-(phenylamino)-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy) prop-3-en-1-substituted -2-one)在搭配0.03當量的樟腦磺酸、加熱至120°C的氮氣環境下進行加成,在此條件下,可得到高產率的苯基胺二酮形式的產物(2-substituted-3-oxo-N-phenylbutanamide)。
除此之外,本反應更可與前一步驟之分子內氧化反應進行一鍋化反應,產率也大多能夠維持有一定的水準(50%-70%)。
第二章
本章記錄利用無金屬催化的自由基加成環化反應來進行1-烯丙基-2-乙烯基苯與亞硝基苯的環化,利用亞硝基苯的自由基活性來促使1-烯丙基-2-乙烯基苯這種類型的雙烯化合物進行[2+2+2]的環化,建構出一系列氮氧雜環之結構產物2-苯基代-2,3,3a,4,9,9a-六氫萘並[2,3-d]異噁唑(2-phenyl-2,3,3a,4,9,9a-hexahydronaphtho[2,3-d]isoxazole),這種新的環加成反應是目前少數是使用烯烴來進行[2+2+2]合環反應的例子,而本篇討論之反應可以在不添加溶劑之氮氣環境下,加熱至120°C成功產生出理想產物。
PART 1
Here, we described the synthesis of 2-substituted-3-oxo-N-phenylbutanamide through an efficient radical addition reaction. Optimizing the condition for the radical addition of alkenes with (E)-4-(phenylamino)-4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy) prop-3-en-1-substituted-2-one, and we have it best performed at 120 oC in toluene that described with moderate to good yields. The structures of products consist of diketone and N-phenylamide, which could be used for further applications such as providing starting materials for Mannich reaction to synthesize natural products.

PART 2

This part of the dissertation deals with a metal free [2+2+2] radical cycloaddition of 1-allyl-2-vinylbenzene derivatives and nitrosobenzenes constructing (1S,4S)-2-phenyl-2,3,4,5-tetrahydro-1H-4,1-(epoxymethano) benzo[c]azepine derivatives. The advantages of this new radical cycloaddition are based on the easily accessible substrates and the readily achievable condition. There are only few examples using alkene for [2+2+2] radical cycloaddition reactions so far, which highlighted the value of this research.
目錄
謝誌 I
中文摘要 II
中文摘要 III
英文摘要 IV
目錄 V
表目錄 VIII
圖目錄 IX
附件目錄 XI
英文縮寫對照表 XVII
第一章 2
第一節 緒論 2
第二節 文獻回顧 3
2-1 銅金屬催化自由基氧化環化反應 3
2-2長效自由基化合物 4
2-3 以過度金屬催化之自由基反應 5
2-4 無金屬催化之自由基反應 6
2-5以氮氧化合物調節自由基加成反應 7
2-6無金屬之異羥肟酸類型自由基反應 8
2-7以添普調節自由基加成環化反應 9
2-8反應應用 11
第三節 實驗目標與動機 12
3-1實驗動機與新方法 12
3-2 苯胺基丁烯酮與未活化烯烴進行自由基加成反應 13
3-3 最佳化反應條件 14
3-4基質合成 17
3-5 多種苯胺基烯酮與正辛烯進行自由基加成反應的容忍度測試 17
3-6 苯胺基丁烯酮與多種烯類進行自由基加成反應的容忍度測試 19
3-7 反應一鍋化之測試 23
3-8 反應機構探討 25
3-7 N-苯基碳酰胺應用 26
3-8 結構鑑定 27
第四節 結論 36
第五節 實驗部分 36
5-1 實驗的一般操作 36
5-2 基質合成 39
5-3 催化步驟 46
5-4 實驗光譜數據資料 47
第六節 參考文獻 64
第二章 126
第一節 緒論 126
第二節 文獻回顧 127
2-1前言 127
2-2分子內雙烯自由基環化反應 127
2-3 亞硝基苯之性質與應用 128
2-4 亞硝基化合物之短週期自由基效應 129
2-5 N-苯基羥胺與亞硝基化合物之銅催化含氧氧化反應 130
2-6銅金屬調節芳香亞硝基化合物與3-N-羥基烯丙胺之[3+2]環化反應 131
第三節 結果與討論 132
3-1實驗動機與構思 132
3-2 1-烯丙基-2-乙烯基苯與亞硝基苯反應合環 132
3-3 最佳化反應條件-1 133
3-4最佳化反應條件-2 135
3-5 基質合成 136
3-6 反應機構推論 137
3-7 結構鑑定 139
第四節 結論 148
第五節 實驗部分 148
5-1 實驗的一般操作 148
5-2 基質合成 151
5-3 自由基加成步驟 154
5-4 實驗光譜數據資料 154
第六節 參考文獻 159
Chapter 1
[1] a) Chatgilialoglu, C.; Studer, A., Eds. Encyclopedia of Radicals in Chemistry, Biology and Materials; Wiley: Chichester, U.K. 2012. b) A. Studer, D. P. Curran., Angew. Chem. Int. Ed. 2016, 55, 58-102.
[2] Sharma, P. and Liu, R.-S., Chem. Eur. J. 2015, 21, 4590–4594.
[3] a) Griller, David and Ingold, Keith U., Accounts of Chemical Research. 1976, vol. 9, 13-19. b) M. Gomberg. J. Am. Chem. Soc. 1900, 22 (11), 757–771. c) Jacek Zielonka, Hongtao Zhao, Yingkai Xu, B. Kalyanaraman., Free Radical Biology & Medicine. 2005, 39 (7), 853–863. d) Kamigaito, M.; Ando, T.; Sawamoto, M., Chem Rev. 2001, 101, 3689. e) Matyjaszewski, K.; Xia., J. Chem Rev. 2001, 101, 2921.
[4] a) B. E. Daikh, R. G. Finke, J. Am. Chem. Soc. 1992, 114, 2938. b) B. E. Daikh, R. G. Finke, J. Am Chem. Soc. 1991, 113, 4160. c) E. Rijnberg, J. Boersma, J. T. B. H. Jastrzebski, M. T. Lakin, A. L. Spek, G. van Koten, Organometallics. 1997, 16, 3158. d) G. Pattenden, Chem. Soc. Rev. 1988, 17, 361. e) J. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94, 519. f) B. P. Branchaud, G.-X. Yu, Organometallics. 1993, 12, 4262. g) H. Bhandal, A. R. Howell, V. F. Patel, G. Pattenden, J. Chem. Soc. Perkin Trans. 1. 1988, 29, 167. h) M. S. Kharasch, E. V. Jensen, W. H. Urry, Science. 1945, 102, 128. i) M. S. Kharasch, E. V. Jensen, W. H. Urry, J. Am. Chem. Soc. 1945, 67, 1626. j) F. Minisci, Acc. Chem. Res. 1975, 8, 165. k) D. Bellus, Pure Appl. Chem. Soc. 1985, 67, 1626. l) R. A. Gossage, L. A. van de Kuil, G. van Koten, Acc. Chem. Res. 1998, 31, 423. m) H. Matsumoto, T. Nakano, Y. Nagai, J. Organometal. Chem. 1979, 174, 157. n) C. L. Hill, Synlett. 1995, 127.
[5] a) D. H. R Barton, J. M. Beaton, L. E. Geller, M. M. Pechet, J. Am. Chem. Soc. 1960, 82, 2640. b) G. Majetich, K. Wheless, Tetrahedron. 1995, 51, 7095. c) D. H. R. Barton, R. P. Budhiraja, J. F. Mcghie, J. Chem. Soc. C. 1969, 336. d) Y. L. Chow, Acc. Chem. Res. 1973, 6, 354. e) A. Bravo, H.-R. Bjørsvik, F. Fontana, L. Liguori, F. Minisci, J. Org. Chem. 1997, 62, 3849.
[6] a) A. Studer, Angew. Chem. 2000, 112, 1157 ; Angew. Chem. Int. Ed., 2000, 39, 1108. b) T. J. Conolly, J. C. Scaiano, Tetrahedro Lett. 1997, 38, 1133. c) M. V. Ciriano, H.-G. Korth, W. B. van Scheppingen, P. Mulder, J. Am. Chem. Soc. 1999, 121, 6375.
[7] a) Valerie A. Schmidt, Erik J. Alexanian, J. Am. Chem. Soc. 2011, 133, 11402-11405. b) Benjamin C. Giglio, Valerie A. Schmidt, Erik J. Alexanian, J. Am. Chem. Soc. 2011, 133, 13320-13322. c) Ryan K. Quinn, Valerie A. Schmidt, Erik J. Alexanian, Chem. Sci. 2013, 4, 4030-4034.
[8] a) Christian Wetter, Katja Jantos, Katharina Woithe, Armido Studer, Org. Lett. 2003, 5 (16), 2899-2902. b) Armido Studer, Tobias Schulte, The Chemical Record, 2005, 5, 27-35.
[9] a) Flávia A. F. da Rosa, Ricardo A. Rebelo, Maria G. Nascimento. J. Braz. Chem. Soc. 2003, 14, 11-15. b) J. P. Kutney, R. T. Brown, E. Piers, Calladiall Journal of Chemistry. 1963, 44, 637-639. c) J. Michael, P. Reichardt, J. G. Sweeny, J. Am. Chem. Soc. 1973, 95 (16), 5407-5409.
[10] O. A. Luk'yanov, G. V. Pokhvisneva. Russ. Chem. Bull. (Int. Ed.), 2015, 64, 83-63.
[11] Dubovyk, I.; Iain, D. G. W.; Yudin, A. K. J. Org. Chem. 2013, 78, 1559-1575.
[12] Murahashi, S.-I.; Imada, Y.; Taniguchi, Y.; Kodera, Y. Tetra. Lett. 1988, 29, 2973-2976.
[13] Keck, G. E.; Webb, R. R. II. Tetra. Lett. 1982, 23, 3051-3054.
[14] Bo Wen, Joseph K. Hexum, John C. Widen, Daniel A. Harki, Kay M. Brummond. Org. Lett., 2013, 15 (11), 2644–2647.
[15] Audrey Boutier, Claire Kammerer-Pentier, Norbert Krause, Guillaume Prestat, Giovanni Poli. Chem. Eur. J. 2012, 18, 3840 – 3844.
[16] Jyoti Agarwal, Claude Commandeur, Max Malacria, Serge Thorimbert. J. Agarwal et al. Tetrahedron, 2013, 69, 9398-9405.

Chapter 2
[1] a) Rice, W.G.; Hillter, C. D.; Harten, B.; Schaeffer, C. A.; Dorminy, M. Lackey, D. A., III; Kirsten, E.; Mendeleyev,J.;Buki,K. G.; Hakam,A.;Kun, E. Proc. Natl. Sci. U.S.A. 1992, 89, 7703-07. b)Rice,W. G.; Schaeffer, C. A.; Harten, B.; Villiger, F.; South, T. L.; Summers, M. F.; Henderson, L. E.; Bess, J. W., Jr.; Arthur, L. O.; McDougal, J. S.; Orloff, S. L.; Mendeleyev, J.; Kun, E. Nature. 1993, 361, 473.
[2] a) Strith, J.; Defoin, A. Synthesis 1994, 1107. b) Kibayashi, C.; Aoyagi, S. Synlett. 1995, 873. c) Vogt, P. F.; Miller, M. J. Tetrahedron. 1998, 54, 1317. d) Adam, W.; Krebs, O. Chem. Rev. 2003, 103,4131. e) Iwasa, S.; Fakfruddin, A.; Nishiyama, H. Mini-Rev. Org. Chem. 2005, 2, 157. f) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031.
[3] Bhunia, S.; Ghorpade, S.; Huple, D. B.; L., R.-S. Angew. Chem. Int. Ed. 2012, 51, 2939-2942.
[4] Ghorpade, S.; Jadhav, P. D.; L., R.-S. Chem. Eur. J. 2016, 22, 2915-2919.
[5] a) Petr Zuman, Bhacdeep Shah; Chem. Rev. 1994, 94, 1621-1641. b)
Bhujle, V.; Wild, U. P.; Baumann, H. Tetrahedron. 1976, 32, 467- 471. c) Lauer, W. M.; Sprung, M. M.; Langkammerer, C. M. J. Am.Chem. Soc. 1936, 58, 225-228. d) Benesch, R. E.; Benesch, R. J. Am. Chem. Soc. 1955, 77, 5877- 5881. e) Gilman, H.; McCracken, R. J. Am. Chem. Soc. 1927, 49, 1052-1061. f) Yunes, R. A,; Terenzani, A. J.; Andrich, D. D.; Scarabino, C. A. J . Chem. Soc., Perkin Trans. 2 1973, 696-700.
[6] a) R. F. Heck, J. Am. Chem. Soc. 1972, 94, 2712. b) Evans, D.; Osborn, J.; Wilkinson, G. J. Chem. Soc. A. 1968, 3133. c) Yagupsky, M.; Wilkinson, G. J. Chem. Soc. A. 1970, 941. d) Larionov, E.; Li, H. H.; Mazet, C. Chem. Commun. 2014, 50, 9816. e) G. A. Molamder.; E. E. Knight. J. Org. Chem. 1998, 63, 7009-7012. f) Y. Uozumi.; H. Tsuji.; T. Hayashi. J. Org. Chem. 1998, 63, 6137-6140. g) T. Hayashi.; Y. Uozumi. J. Org. Chem. 2001, 66, 1441-1449.
[7] a) Lumsden, M. D.; Wu, G.; Wasylishen, R. E.; Curtis, R. D. J. Am. Chem. Soc. 1993, 115, 2825-2832.b) Orrell, K. G.; Sik, V.; Stephenson, D. Magn. Reson. Chem. 1987, 25, 1007-1011.c) Orrell, K. G.; Sik, V.; Stephenson, D.; Thierry, R. Magn. Reson. Chem. 1989, 27, 368-76.d) Politzer, P.; Bar-adon, R. J. Phys. Chem. 1987, 91, 2069-73. e) Cameron, M.; Gowenlock, B. G.; Vasapollo, G. Chem. Soc. Rev. 1990, 19, 355-79. f) Petr Zuman; Bhavdeep Shah. Chem.Rev. 1994, 94, 1621-1641.
[8] a) Kurt Torssell. Acta. Chem. Scand. 1969, 23, 522-530. b) Cardenas, A. J.; Culotta, B. J.; Warren, T. H.; Grimme, S.; Stute, A.; Fröhlich, R.; Kehr, G.; Erker, G. Angew. Chem. Int. Ed. 2011, 50, 7565-7571.
[9] Charles P. Frazier.; Alejandro Bugarin.; Jarred R. Engelking.; Javier Read de Alaniz. Org. Lett., 2012, 14, No. 14, 3620-3623. Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
[10] Satish Ghorpade.; Prakash D. Jadhav.; Rai-Shung Liu. Chem. Eur. J. 2016, 22, 2915-2919. F. Cardona, A. Goti. Angew. Chem. Int. Ed. 2005, 44, 7832-7835.
[11] Hu Chen, Zhaofeng Wang, Yingnan Zhang, Yong Huang. J. Org. Chem. 2013, 78, 3503−3509.
[12] Jun Yong Kang, Alejandro Bugarin, Brian T. Connell. Chem. Commun. 2008, 3522–3524.
[13] Sato, Ken-Ichi; Akai, Shoji; Hiroshima, Toshiyuki; Aoki, Hidenori; Sakuma, Mayumi; Suzuki, Ken-Ju. Tetra. Lett. 2003, 44, 3513-3516.
[14] R. David Grigg, Ryan Van Hoveln, Jennifer M. Schomaker. J. Am. Chem. Soc., 2012, 134 (39), 16131–16134
[15] M. Ohashi, T. Kawashima, T. Taniguchi, K. Kikushima, S. Ogoshi. Organometallics, 2015, 34 (9), 1604–1607
[16] A. A. Mikhaylova, A. D. Dilmana, R. A. Novikova, Y. A. Khoroshutina, M. I. Struchkovaa, D. E. Arkhipovb, Y. V. Nelyubinab, A. A. Tabolina, S. L. Ioffe. Tetrahedron Letters. 2016, 57, 11–14.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *