帳號:guest(3.137.218.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):裴伯欣
作者(外文):Bui, Ba Han
論文名稱(中文):醣化對蛇毒金屬蛋白酶的結構與活性影響研究
論文名稱(外文):The Role of N-glycosylation on the Activity and Conformation of Cobra Venom Metalloproteinase
指導教授(中文):吳文桂
指導教授(外文):Wu, Wen Guey
口試委員(中文):簡昆鎰
許素菁
口試委員(外文):Chien, Kun-Yi
Hsu, Shu Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080710
出版年(民國):106
畢業學年度:105
語文別:英文中文
論文頁數:48
中文關鍵詞:N端醣基醣化蛇毒金屬蛋白
外文關鍵詞:N-linked glycosylationGlycosylationSnake venom metalloproteinase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
N端醣基修飾在真核細胞蛋白質表達扮演重要的生理功能,不僅提供蛋白質合成過程與折疊時的關鍵品質管制,也在細胞的內外訊息傳遞,以及細胞與細胞相互作用,扮演重要的生物功能,因此近年來有關醣基修飾的結構與功能關聯研究逐漸受到重視。
蛇毒蛋白亦包含醣基修飾,但是過去探討蛇毒的作用機制,多在不含醣基的小分子量毒蛋白,對於含醣基的高分子量醣蛋白及其醣基的功能較少研究。 本研究乃針對台灣眼鏡蛇毒中的兩種金屬水解酵素 Atragin 和K-like,探討去除部分醣基後的酵素活性功能的變化,以了解這些醣基的可能生物功能。 我們採用Endo F3 去醣水解酵素去除大部分醣基,僅保留與蛋白質共價鍵結的雙醣, 然後比較去醣後酵素功能的變化,並進一步用二色圓光譜及螢光光譜等技術了解結構改變造成活性變化的原因。

結果顯示去除醣基後,對於不同受質蛋白如 fibrinogen, fibronectin, collagen type I, 和 azocasein會有不同程度的影響,因受質蛋白的不同,分別有增加或減少活性的作用,因此醣基應該對於不同的受質蛋白扮演進一步選擇的功能。 就結構而言,去醣後的整體構型並無顯著影響,但是局部的構型會因部分醣基的去除導致動態的變化。 另外一個影響是去除醣基所含的負電荷後,蛋白質的表面電位也跟著改變, 並且曝露出更多的疏水作用區,這些改變,部分反應在肝素與此兩種金屬蛋白水解酵素的結合能力變化以及肝素進一步調控酵素活性的能力。
Background
N-linked glycosylation is one of most important post-translational modification for several physiological processes in all eukaryote cells. There is growing interest in understanding the roles of the attached N-glycans on the structures and stability of the investigated proteins be-cause recent studies have shown that N-linked glycans are not only play a role in the quality control process during protein synthesis, but also affect significantly on their biological func-tions. Snake venom toxins also consist of glycoproteins, but the function of glycosylation re-mains illusive.

Methods
In this study, we investigate two P-III snake venom metalloproteinases (SVMPs), for example, Atragin and K-like from Naja atra, and correlate its enzymatic activities before and after cleaving the N-glycan complexes with Endoglycosydase. We express Endoglycosidase F3 and use it to remove N-glycan complexes of Atragin and K-like SVMPs to understand whether the truncated sugar molecule with one N-acetylglucosamine and a fuccose residue remaining on the asparagine could still maintain their structure and activity. Three different substrates from extracellular matrix, for instance, fibrinogen, fibronectin, collagen type I, and azocasein were tested and the protease activity of Atragin and K-like SVMPs were compared. Finally, their structures were examined by Circular Dichroism and fluorescence spectroscopy.

Results
The P-III SVMPs and its mammalian homologues of ADAMs, and ADAMTSs all consist of at least one N-linked protein glycosylation, but the exact location of the N-glycans appear to vary significantly among different SVMPs and its homologues. Comparison of the enzymatic activities between K-like and Atragin SVMPs indicate that the effect of deglycosylation is substrate dependent. For instance, while there was not a significant change in the enzymatic activity of N-deglycosylated Atragin and – K-like with fibronectin and vitronectin substrates, the fibrinogenolytic and collagenolytic activity of Atragin and K-like, however, were signifi-cantly perturbed after deglycosylating. Moreover, the azocaseinolytic activity with sulfonila-mide-azocasein, a nonspecific substrate, showed a significantial fall off in the N-deglycosylated K-like activity, whereas Atragin retain the same activity. Finally, we also dis-covered that the N-deglycosylated K-like bound to heparin column much more stronger than native K-like, and the observed heparin binding could significantly enhance its enzymatic ac-tivity.
In order to understand the observed change in its enzymatic activity, we examine the possible effect of glycosylation on its structural stability. The N-glycans contributed to a change in negatively charged surface and shifting the pH value of protein toward acidic pI of Atragin and K-like. Since there is no detected conformational change based on Circular Di-chroism result, the N-glycan appears to retain the stability of protein avoided to aggregation and precipitation, likely leading to an decrease in protein stability with high temperatures and denaturant.
CHAPTER 1 Introduction 1
I. Classification and modular organization of snake venom metalloproteinases (SVMPs) 1
II. Biological activites of SVMPs 2
III. Crystal structures of SVMPs 3
IV. Substrates for analysing the biological activity of SVMPs 4
V. Glycosylation and its roles on glycoproteins 5
VI. Glycosylation of SVMPs and ADAMs family 10

CHAPTER 2 Experimental Procedures 12
I. Materials 12
II. Expression and purification of TEV-his tag protease and Endo F3 12
III. Purification of deN-glycosylated Atragin and – K-like treating to Endo F3 13
IV. Measurement of biological activities 14
V. Measurement of proteolytic activity of heparin-binding deN-glycosylated Atragin and – K-like 14
IV. Spectroscopy assays 14
VII. Structure visulization 15

CHAPTER 3 Results 16
I. The P-III snake venom metalloproteinases are N-linked glycosylation proteins 16
II. N-glycosylation stabilizes the enzymatic activity of Atragin and K-like 16
III. N-glycosylation affects local conformation, but not global structure of SVMPs 18
IV. Removing N-glycosylation singificantly increase heparin-binding affinity and proteinolytic activity of K-like 19

CHAPTER 4 Discussions 21

References 42
1. Achê D.C., Gomes M.S., de Souza D.L., Silva M.A., Brandeburgo M.I., Yoneyama K.A., Rodrigues R.S., Borges M.H., Lopes D.S., and Rodrigues Vde M. (2015). "Bio-chemical properties of a new PI SVMP from Bothrops pauloensis: Inhibition of cell ad-hesion and angiogenesis." International Journal of Biological Macromolecules 72: 445–453.
2. Akiyama M., Takeda S., Kokame K., Takagi J., and Miyata T. (2009). "Crystal struc-tures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor." PNAS 106(46): 19274–19279
3. Ande S.R., Kommoju P.R., Draxl S., Murkovic M., Macheroux P., Ghisla S., and Fer-rando-May E. (2006). "Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom." Apoptosis 11(8): 1439-1451.
4. Asega A.F., Oliveira A.K., Menezes M.C., Neves-Ferreira A.G., and Serrano S.M. (2014). "Interaction of Bothrops jararaca venom metalloproteinases with protein inhibi-tors." Toxicon 80: 1–8.
5. Barrabés S., Sarrats A., Fort E., Llorens R.De., Rudd P.M., and Peracaula R. (2010). "Effect of sialic acid content on glycoprotein pI analyzed by two-dimensional electro-phoresis." Electrophoresis 31(17): 2903-2912.
6. Bisello A., Greenberg Z., Behar V., Rosenblatt M., Suva L.J., and Chorev M. (1996). "Role of glycosylation in expression and function of the human parathyroid hor-mone/parathyroid hormone-related protein receptor." Biochemistry. 35(49): 15890-15895.
7. Bondos S.E., and Bicknell A. (2003). "Detection and prevention of protein aggregation before, during, and after purification." Analytical Biochemistry 316(2): 223-231.
8. Calvete J.J., Reinert M., Sanz L., and Töpfer-Petersen E. (1995). "Effect of glycosyla-tion on the heparin-binding capability of boar and stallion seminal plasma proteins." J Chromatogr A. 711(1): 167-173.
9. Chang C.F., Hsu L.S., Weng C.Y., Chen C.K., Wang S.Y., Chou Y.H., Liu Y.Y., Yuan Z.X., Huang W.Y., Lin H., Chen Y.H., and Tsai J.N. (2016). "N-Glycosylation of Hu-man R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Hepa-rin Binding Ability." Int J Mol Sci. 2016 Jun 14;17(6) 17(937): 1-23.
10. Chen H.S., Chen J.M., Lin C.W., Khoo K.H., and Tsai I.H. (2008). "New insights into the functions and N-glycan structures of factor X activator from Russell's viper venom." FEBS J 275(15): 3944-3958.
11. Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., and Etzler M.E. (2008). "Essentials of Glycobiology." Second Edition, Cold Spring Harbor Laboratory Press.
12. Mosher D.E. (1984). "Physiology of fibronectin." Annu Rev Med 35: 561-575.
13. Gowda D.C. and Davidson E.A. (1992). "Structural features of carbohydrate moieties in snake venom glycoproteins." Biochem. Biophys. Res. Commun. 182(1): 294-301.
14. García B., Merayo-Lloves J., Rodríguez D., Alcalde I., García-Suárez O., Alfonso J.F., Baamonde B., Fernández-Vega A., Vazquez F., and Quirós L.M. (2016). "Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens." Front Cell Infect Microbiol. 6(173): 1-12.
15. García L.T., Parreiras e Silva L.T., Ramos O.H., Carmona A.K., Bersanetti P.A., and Selistre-de-Araujo H.S. (2004). "The effect of posttranslational modifications on the hemorrhagic activity of snake venom metalloproteinases." Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 138(1): 23-32.
16. Gelse K., Pöschl E., and Aigner T. (2003). "Collagens: structure, function, and biosyn-thesis." Adv Drug Deliv Rev. 55(12): 1531-1546.
17. Geyer A., Fitzpatrick T.B., Pawelek P.D., Kitzing K., Vrielink A., Ghisla S., and Macheroux P. (2001). "Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma." Eur. J. Biochem. 268(14): 4044-4053.
18. Gowda D.C., Jackson C.M., Hensley P., and Davidson E.A. (1994). "Factor X-activating glycoprotein of Russell's viper venom. Polypeptide composition and charac-terization of the carbohydrate moieties." J. Biol. Chem. 269(14): 10644-10650.
19. Gowda D.C., J. C. M., Kurzban G.P., McPhie P., and Davidson E.A. (1996). "Core sug-ar residues of the N-linked oligosaccharides of Russell's viper venom factor X-activator maintain functionally active polypeptide structure." Biochemistry 35: 5833-5837.
20. Gowda D.C., Petrella E.C., Raj T.T., Bredehorst R., and Vogel C.W. (1994). "Immuno-reactivity and function of oligosaccharides in cobra venom factor." J. Immunol. 152(6): 2977-2986.
21. Gowda D.C., Schultz M., Bredehorst R., and Vogel C.W. (1992). "Structure of the ma-jor oligosaccharide of cobra venom factor." Mol. Immunol. 29(3): 335-342.
22. Guan H.H., Goh K.S., Davamani F., Wu P.L., Huang Y.W., Jeyakanthan J., Wu W.G., and Chen C.J. (2010). "Structures of two elapid snake venom metalloproteases with dis-tinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins." Journal of Structural Biology 169(3): 294–303.
23. Gutiérrez J.M. and Rucavado A. (2010). "Snake venom metalloproteinases:Their role in the pathogenesis of local tissue damage." Biochimie 82(9-10): 841–850.
24. Hall T., Shieh H.S., Day J.E., Caspers N., Chrencik J.E., Williams J.M., Pegg L.E., Pauley A.M., Moon A.F., Krahn J.M., Fischer D.H., Kiefer J.R., Tomasselli A.G., and Zack M.D. (2012). "Structure of human ADAM-8 catalytic domain complexed with batimastat." Acta Cryst. 68: 616-621.
25. Higel F., Seidl A., Sörgel F., and Friess W. (2016). "N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins." Eur J Pharm Biopharm. 100: 94-100.
26. Hou S., Hang Q., Isaji T., Lu J., Fukuda T., and Gu J. (2016). "Importance of mem-brane-proximal N-glycosylation on integrin β1 in its activation and complex formation." FASEB J. 30(12): 4120-4131.
27. Huang H.W., Liu B.S., Chien K.Y., Chiang L.C., Huang S.Y., Sung W.C., and Wu W.G. (2015). "Cobra venom proteome and glycome determined fromindividual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation." Journal of Proteomics 128: 92-104.
28. Hynes R. (1985). "Molecular biology of fibronectin." Annu Rev Cell Biol. 1: 67-90.
29. Igarashi T., Araki S., Mori H., and Takeda S. (2007). "Crystal structures of catrocollas-tatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins." FEBS Letters 581: 2416–2422.
30. Janosi J.B., Firth S.M., Bond J.J., Baxter R.C., and Delhanty P.J. (1999). "N-linked gly-cosylation and Sialylation of the Acid-labile Subunit." The Journal of Biological Chem-istry 274: 5292-5298.
31. Kleene R. and Schachner M. (2004). "Glycans and neural cell interactions." Nat Rev Neurosci. 5(3): 195-208.
32. Kuwabara N., Many H, Yamada T., Tateno H., Kanagawa M., Kobayashi K., Akasaka-Manya K., Hirose Y., Mizuno M., Ikeguchi M., Toda T., Hirabayashi J., Senda T., Endo T., and Kato R. (2016). "Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan." Proc Natl Acad Sci 113(33): 9280-9285.
33. Lee H.S., Qi Y.F., and Im W. (2015). "Effects of N-glycosylation on protein confor-mation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study." scientific Reports 5(8926): 1-7.
34. Leonardi A., Sajevic T., Kovačič L., Pungerčar J., Lang Balija M., Halassy B., Trampuš Bakija A., and Križaj I. (2014). "Hemorrhagin VaH4, a covalent heterodimeric P-III metalloproteinase from Vipera ammodytes ammodytes with a potential antitumour ac-tivity." Toxicon 77: 141–155.
35. Li Q., Colberg T.R., and Ownby C.L. (1993). "Purification and characterization of two high molecular weight hemorrhagic toxins from Crotalus viridis viridis venom using monoclonal antibodies." Toxicon 31(6): 711-722.
36. Lim N.H., Kashiwagi M., Visse R., Jones J., Enghild J.J., Brew K., and Nagase H. (2010). "Reactive-site mutants of N-TIMP-3 that selectively inhibit ADAMTS-4 and ADAMTS-5: biological and structural implications." Biochem J. 431(1): 113-122.
37. Liu H., Shim A., Chen X., and He X. (2009). "Structural Characterization of the Ecto-domain of a Disintegrin and Metalloproteinase-22 (ADAM22), a Neural Adhesion Re-ceptor Instead of Metalloproteinase." J Biol Chem. 284(42): 29077-29086.
38. Lynch C.J. and Lane D.A. (2016). "N-linked glycan stabilization of the VWF A2 do-main." Blood 217(13): 1711-1718.
39. Mosesson M.W. (2005). "Fibrinogen and fibrin structure and functions." J Thromb Haemost. 3(8): 1894-1904.
40. Macêdo J.K and Fox J.W. (2014). "Biological Activities and Assays of the Snake Ven-om Metalloproteinases (SVMPs)." Venom Genomics and Proteomics: 1-24.
41. Magalhães A., Magalhães H.P., Richardson M., Gontijo S., Ferreira R.N., Almeida A.P., and Sanchez E.F. (2007). "Purification and properties of a coagulant thrombin-like en-zyme from the venom of Bothrops leucurus." Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 146(4): 565-575.
42. Margraf-Schonfed S., Bohm C., and Watzl C. (2011). "Glycosylation affects ligand binding and function of the activating natural killer cell receptor 2B4 (CD244) protein." 286 The journal of Biological Chemistry: 24142-24149.
43. Markland F.S. Jr and Swenson S. (2013). "Snake venom metalloproteinases." Toxicon 62: 3-18.
44. Menaldo D.L., Bernardes C.P., Santos-Filho N.A., Moura Lde A., Fuly A.L., Arantes E.C., and Sampaio S.V. (2012). "Biochemical characterization and comparative analysis of two distinct serine proteases from Bothrops pirajai snake venom." Biochimie 94(12): 2545–2558.
45. Mende M., Bednarek C., Wawryszyn M., Sauter P., Biskup M.B., Schepers U., and Bräse S. (2016). "Chemical Synthesis of Glycosaminoglycans." Chem Rev. 116(14): 8193-8255.
46. Miyamoto Y., Tanabe M., Date K., Sakuda K., Sano K., Ogawa H. (2016). "Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site." Glycoconj J. 33(2): 227-236.
47. Moremen K.W., Tiemeyer M., and Nairn A.V. (2012). "Vertebrate protein glycosylation: diversity, synthesis and function." Nat Rev Mol Cell Biol. 13(7): 448-462.
48. Mosyak L., Georgiadis K., Shane T., Svenson K., Hebert T., McDonagh T., Mackie S., Olland S., Lin L., Zhong X., Kriz R., Reifenberg E.L., Collins-Racie L.A., Corcoran C., Freeman B., Zollner R., Marvell T., Vera M., Sum P.E., Lavallie E.R., Stahl M., Somers W. (2008). "Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5." Protein Sci. 17: 16-21.
49. Moura-da-Silva A.M., Butera D., and Tanjoni I. (2007). "Importance of Snake Venom Metalloproteases in Cell Bioloy: Effects on Platelets, Inflammatory, and Endothelial Cells." Current Pharmaceutical Design 13: 2893-2905.
50. Muniz J.R., Ambrosio A.L., Selistre-de-Araujo H.S., Cominetti M.R., Moura-da-Silva A.M., Oliva G., Garratt R.C., and Souza D.H. (2008). "The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups." Toxicon 52(7): 807-816.
51. Nilsson E.C., Storm R.J., Bauer J., Johansson S.M., Lookene A., Ångström J., Hedenström M., Eriksson T.L., Frängsmyr L., Rinaldi S., Willison H.J., Pedrosa Domellöf F., Stehle T., and Arnberg N. (2011). "The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis." Nat Med. 17(1): 105-109.
52. Oliveira A.K., Paes Leme A.F., Asega A.F., Camargo A.C.M., Fox J.W., and Serrano S.M.T. (2010). "New insights into the structural elements involved in the skin haemor-rhage induced by snake vom metalloproteinases." Blood Coaglulation, Fibrinolysis and Cellular Haemostasis 104: 485-497.
53. Orth P., Reichert P., Wang W., Prosise W.W., Yarosh-Tomaine T., Hammond G., In-gram R.N., Xiao L., Mirza U.A., Zou J., Strickland C., Taremi S.S., Le H.V., and Madi-son V. (2004). "Crystal Structure of the Catalytic Domain of Human ADAM33." J. Mol. Biol. 335: 129–137.
54. Osipov A.V., Astapova M.V., Tsetlin V.I., and Utkin Y.N. (2004). "The first representa-tive of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra ven-om." Eur. J. Biochem. 271(10): 2018-2027.
55. Oyama E. and Takahashi H. (2015). "Purification and characterization of two high mo-lecular mass snake venom metalloproteinases (P-III SVMPs), named SV-PAD-2 and HR-Ele-1, from the venom of Protobothrops elegans (Sakishima-habu)." Toxicon 103: 30–38.
56. Pinho S.S. and Reis C.A. (2015). "Glycosylation in cancer: mechanisms and clinical implications." Nature Reviews Cancer 15(9): 540-555.
57. Pfeiffer G., Dabrowski U., Dabrowski J., Stirm S., Strube K.H., and Geyer R. (1992). "Carbohydrate structure of a thrombin-like serine protease from Agkistrodon rhodosto-ma. Structure elucidation of oligosaccharides by methylation analysis, liquid secondary-ion mass spectrometry and proton magnetic resonance." Eur. J. Biochem. 205(3): 961-978.
58. Pol-Fachin L., Franco Becker C., Almeida Guimarães J., and Verli H. (2011). "Effects of glycosylation on heparin binding and antithrombin activation by heparin." Proteins 79(9): 2735-2745.
59. Proctor R.A. (1987). "Fibronectin: A Brief Overview of Its Structure, Function, and Physiology." Clin Infect Dis. 9: S317-S321.
60. Roth Z., Yehezkel G., and Khalaila I. (2012). "Identification and Quantification of Pro-tein Glycosylation." International Journal of Carbohydrate Chemistry: 1-10.
61. Sakai J., Zhang S., Chen H., Atsumi F., Matsui T., Shiono H., Sanada S., and Okada T. (2006). "Primary structure of a thrombin-like serine protease, kangshuanmei, from the venom of Agkistrodon halys brevicaudus stejneger." Toxicon 48(3): 313-322.
62. Sant' Ana C.D., Ticli F.K., Oliveira L.L., Giglio J.R., Rechia C.G., Fuly A.L., Selistre de Araújo H.S., Franco J.J., Stabeli R.G., Soares A.M., and Sampaio S.V. (2008). "BjussuSP-I: a new thrombin-like enzyme isolated from Bothrops jararacussu snake venom." Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 151(3): 443-454.
63. Sant'Ana C.D., Bernardes C.P., Izidoro L.F., Mazzi M.V., Soares S.G., Fuly A.L., Zin-gali R.B., Magro A.J., Braz A.S., Fontes M.R., Stabeli R.G., Sampaio S.V., and Soares A.M. (2008). "Molecular characterization of BjussuSP-I, a new thrombin-like enzyme with procoagulant and kallikrein-like activity isolated from Bothrops jararacussu snake venom." Biochimie 90(3): 500-507.
64. Sanz L., Harrison R.A., and Calvete J.J. (2012). "First draft of the genomic organization of a PIII-SVMP gene." Toxicon 60(4): 455–469.
65. Serrano S.M. and Maroun R.C. (2005). "Snake venom serine proteinases: sequence ho-mology vs. substrate specificity, a paradox to be solved." Toxicon 45(8): 1115-1132.
66. Shoulders M.D. and Raines R.T. (2009). "Collagen Structure and Stability." Annu Rev Biochem. 78: 929-958.
67. Silva-Junior F.P., Guedes H.L., Garvey L.C., Aguiar A.S., Bourguignon S.C., Di Cera E., and Giovanni-De-Simone S. (2007). "BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role of N-glycosylation in thermostability and active site accessibility." Toxicon 50(1): 18-31.
68. Soares S.G. and Oliveira L.L. (2009). "Venom-sweet-venom: N-linked glycosylation in snake venom toxins." Protein Pept Lett. 16(8): 913-919.
69. Sola R.J. and Griebenow K. (2009). "Effects of glycosylation on the Stability of Protein Pharmaceuticals." J Pharm Sci. 98(4): 1223-1245.
70. Srinivasan S., Romagnoli M., Bohm A., and Sonenshein G.E. (2014). "N-Glycosylation Regulates ADAM8 Processing and Activation." The Journal of Biological Chemistry 289(48): 33676-33688.
71. Takeda S. (2014). "Structure-Function Relationship of Modular Domain of P-III Class Snake Venom Metalloprotease." Toxinology: 1-22.
72. Takeda S. (2016). "ADAM and ADAMTS family proteins and snake venom metallo-proteinase: a structure overview." toxins 8(155): 1-35.
73. Takeda S., Igarashi T., Mori H., and Araki S. (2006). "Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold." The EMBO Journal 25(11): 2388-2396.
74. Takeda S., Igarashi T., and Mori H. (2007). "Crystal structure of RVV-X: An example of evolutionary gain of specificity by ADAM proteinases." FEBS Letters 581(30): 5859–5864.
75. Takeda S., Takeya H., and Iwanaga S. (2012). "Snake venom metalloproteinase: Struc-ture, function and relevance to the mammalian ADAM/ADAMTS family proteins." Bi-ochimica et Biophysica Acta 1824(1): 164–176.
76. Tan N.H., Ponnudurai G., and Chung M.C. (1997). "Proteolytic specificity of rhodos-toxin, the major hemorrhagin of Calloselasma rhodostoma (Malayan pit viper) venom." Toxicon 35(6): 979-984.
77. Tanaka N., Nakada H., Itoh N., Mizuno Y., Takanishi M., Kawasaki T., Tate S., Inagaki F., and Yamashina I. (1992). "Novel structure of the N-acetylgalactosamine containing N-glycosidic carbohydrate chain of batroxobin, a thrombin-like snake venom enzyme." J. Biochem. 112(1): 68-74.
78. Taylor M.E., and Drickamer K. (2011). "Introduction of Glycobiology." Third Edition, Oxford University Express.
79. Teklemariam T., Seoane A.I., Ramos C.J., Sanchez E.E., Lucena S.E., Perez J.C., Man-dal S.A., and Soto J.G. (2011). "Functional analysis of a recombinant PIII-SVMP, GST-acocostatin; an apoptotic inducer of HUVEC and HeLa, but not SK-Mel-28 cells." Tox-icon 57(5): 646–656.
80. Tsai I.H., Wang Y.M., and Huang K.F. (2015). "Effects of single N-glycosylation site knockout on folding and defibrinogenating activities of acutobin recombinants from HEK293T." Toxicon 94: 50–59.
81. Tsuchiya M., Niwa Y., and Simizu S. (2016). "N-glycosylation of R-spondin1 at Asn137 negatively regulates its secretion and Wnt/β-catenin signaling-enhancing activi-ty." Oncol Lett. 11(5): 3279-3286.
82. Wang M.M., Liu X.L., Lyu Z.L., Gu H., Li D., and Chen H. (2016). "Glycosaminogly-cans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation." Colloids and Surfaces B: Biointerfaces 150(2017): 175-182.
83. Wu P.L., Kin C.C., Lin T.H., Lee M.S., and Wu W.G. (2016). "Distal M domain of co-bra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to avb3 in the suppression of cell migration." Toxicon 118: 1-12.
84. Wu P.L., Lin C.C., Lin T.H., Lee M.S., Wu W.G. (2016). "Distal M domain of cobra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to αvβ3 integrin in the suppression of cell migration." Toxicon 118: 1-12.
85. Xin F. and Radivojac P. (2012). "Post-translational modifications induce significant yet not extreme changes to protein structure." Bioinformatics 28(2905-2913).
86. Zeng R., Xu Q., Shao X.X., Wang K.Y., and Xia Q.C. (1999). "Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography-electrospray mass spectrometry and Edman degradation." Eur. J. Biochem. 266(2): 352-358.
87. Zhu Z., Liang Z., Zhang T., Zhu Z., Xu W., Teng M., and Niu L. (2005). "Crystal struc-tures and amidolytic activities of two glycosylated snake venom serine proteinases." J. Biol. Chem. 280(11): 10524-10529.
88. Zhu Z.Q., Gao Y.X., Zhu Z.L., Yu Y., Zhang X., Zang J., Teng M.K., and Niu L.W. (2009). "Structural basis of the autolysis of AaHIV suggests a novel target recognizing model for ADAM/reprolysin family proteins." Biochemical and Biophysical Research Communications 386(1): 159-164.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 1. 比較東岸和西岸台灣眼鏡蛇蛇毒的高分子蛋白組成 2. N-鍵結的醣化作用對於台灣眼鏡蛇的蛇毒金屬蛋白水解酵素之活性影響
2. 台灣眼鏡蛇毒金屬蛋白水解酵素的醣化作用及其對酵素活性之影響
3. 利用分析級超高速離心機研究蛇毒毒蛋白之分子結合作用
4. 醣胺素與日本腦炎病毒的交互作用:套膜蛋白醣胺素鍵結區的確立
5. 自硫酸鹽還原菌 Desulfovibrio gigas 中三種形式的亞硫酸鹽還原酶之結構與特性探討其催化機制
6. 台灣眼鏡蛇多半胱氨酸分泌蛋白質之立體結構分析與其在血管內皮細胞調控發炎反應機制之研究
7. 東、西部台灣眼鏡蛇蛇毒蛋白 之細胞毒性與肌肉毒性分析
8. 結合傅氏紅外線光譜儀及電腦模擬計算研究眼鏡蛇磷脂水解酵素A2與細胞膜之間的作用
9. 脂筏在非洲眼鏡蛇心臟毒蛋白作用於人類嗜中性白血球之角色
10. 以核磁共振光譜探討臺灣眼鏡蛇心臟毒素V與肝素衍生雙醣的交互作用
11. 東非眼鏡蛇心臟毒蛋白對人類嗜中性白血球作用機制之研究及其標的蛋白之鑑定
12. 利用定量蛋白體學方法探討轉錄因子AP-4抑制HDM2基因轉錄的機制
13. 台灣眼鏡蛇心臟毒素的結構對毒素進入心肌細胞內的影響研究
14. 以原子力顯微鏡探討膽固醇及心臟毒素A3對腦硫脂人造細胞膜的作用
15. 不朽化骨髓間葉幹細胞之特性探討
 
* *