帳號:guest(18.118.31.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳貞佩
作者(外文):Chen, Chen Pei
論文名稱(中文):新穎上皮細胞生長因子接受體抑制劑藉由抑制腫瘤生長及轉移展現對人類頭頸鱗狀細胞癌的治療效益
論文名稱(外文):A Novel EGFR Inhibitor Exhibits the Therapeutic Efficacy via the Inhibition of Tumor Growth and Metastasis in Human Head and Neck Squamous Cell Carcinoma
指導教授(中文):郭靜娟
莊永仁
指導教授(外文):Kuo, Ching Chuan
Chuang, YungJen
口試委員(中文):夏興國
劉柯俊
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080602
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:頭頸部鱗狀細胞癌惡性轉移間質-上皮細胞轉換G1期停滯表皮生長因子接受器酪胺酸激酶抑制劑表皮生長因子接受器
外文關鍵詞:head and neck squamous cell carcinomametastasismesenchymal-epithelial transitionG1-phase arrestEGFR tyrosine kinase inhibitorepidermal growth factor receptor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
2014年全球常見癌症的統計中,頭頸部鱗狀細胞癌排名第六名,且位居台灣常見癌症當中的第五名。儘管治療的方法很多,其五年存活率依舊非常低;因此,開發新穎之頭頸部鱗狀細胞癌治療藥物有其迫切性。先前研究指出,表皮生長因子接受器 (EGFR) 的表現量和頭頸部鱗狀細胞癌的病理發展、以及預後息息相關。我們近來發現一種新穎的EGFR酪胺酸激酶抑制劑 (EGFR-TKI) - BPR3K007S0,在頭頸部鱗狀細胞癌中具有抑制腫瘤細胞生長的潛能。本研究目標擬探討在EGFR過度表現的頭頸部鱗狀細胞癌FaDu細胞中,BPR3K07S0抗癌的作用及機制。研究結果顯示,BPR3K007S0對FaDu細胞的生長抑制效果比已知的EGFR-TKI - gefinitib來的好。BPR3K007S0也可抑制EGFR、以及其下游路徑的活化,如ERK及AKT等。細胞群落形成實驗顯示,BPR3K007S0可明顯降低細胞生長的能力,但不影響細胞群落數目;此外,BPR3K007S0不會誘導sub-G1的產生,但會造成細胞停滯在G1期並改變G1期相關調控蛋白的表達。進一步探討發現,BPR3K007S0誘導癌細胞的生長抑制可能與促使細胞老化有關。由於EGFR活化亦是造成頭頸部鱗狀細胞癌惡性轉移的主因之一,因此我們進一步探討BPR3K007S0在FaDu細胞上抗腫瘤惡性轉移的能力。結果顯示,BPR3K007S0可誘發間質-上皮細胞轉換,且會增加E-cadherin和減少N-cadherin的表現量。從細胞刮傷試驗及細胞侵入試驗發現,BPR3K007S0確實可抑制癌細胞遷移及侵襲的活性。進一步在活體動物實驗中驗證,BPR3K007S0確實可以有效抑制FaDu異種移植腫瘤之生長,且其抗腫瘤生長效率比gefitinib佳。此外,小鼠實驗性腫瘤轉移模式也顯示,BPR3K007S0確實可以有效降低FaDu轉移到肺臟的機率,且有投予BPR3K007S0藥物治療的小鼠,其肺部腫瘤節結顯著比沒有投予藥物及投予gefitinib的組別少。綜此,本研究闡明新穎之表皮生長因子接受器酪胺酸激酶抑制劑BPR3K007S0,對EGFR過量表達之頭頸癌的治療有良好的效果,值得進一步臨床治療之運用。
Head and neck squamous cell carcinoma (HNSCC) is the sixth common cancer worldwide and the fifth most common cancer in Taiwan in 2014. Despite various therapeutic strategies were used, the 5-year overall survival rate of locally advanced HNSCC patients is still poor. Thus, investigation of novel therapeutic agents against HNSCC is in urgent need. It was well-characterized that the expression of epidermal growth factor receptor (EGFR) is highly associated with HNSCC pathogenesis and poor prognosis. We recently identified a novel EGFR tyrosine kinase inhibitor (EGFR-TKI), BPR3K007S0, with potent activity against HNSCC growth. In the present study, we aimed to investigate the anticancer functionality and mechanism of action of BPR3K007S0 in EGFR-overexpressing HNSCC cell line, FaDu. Based on cell proliferation assay, BPR3K007S0 is more effective than that of clinical used EGFR-TKI gefitinib (Iressa). BPR3K007S0 inhibited the expression of activated EGFR and its downstream pathway, such as ERK and AKT. Clonogenic assay demonstrated that BPR3K007S0 significantly reduces the colony size without affected colony formation. Cell cycle analysis showed that FaDu cells treated with BPR3K007S0 lead to increase cell cycle arrest in G1 phase without sub-G1 phase appearance. BPR3K007S0 also induced a senescence-associated secretory phenotype in FaDu cells. On the other hand, since EGFR activation is a major cause of metastasis in HNSCC, the anti-metastatic potential of BPR3K007S0 is investigated in FaDu cells. BPR3K007S0 induced mesenchymal-epithelial transition (MET) with upregulation of E-cadherin and downregulation of N-cadherin. The wound healing and transwell invasion assays revealed that cell migration and invasion ability were inhibited by BPR3K007S0. The in vivo study revealed that BPR3K007S0 significantly inhibited tumor and showed better anti-tumor efficacy than that of gefitinib.BPR3K007S0 also reduced the incidence of pulmonary metastasis in the in vivo experimental metastasis model. The number of metastatic pulmonary nodules was significantly reduced in the BPR3K007S0-treated group compared with the control and gefinitib treated group. Taken together, we proposed that BPR3K007S0 is a potent EGFR-TKI and may have a therapeutic benefit in treatment of HNSCC.
Mandarin Abstract ...…………………………………………………… I
English Abstract ………………………………………………….......... II
Acknowledgement …...………………………………………………... IV
List of Content ………………………………………………………… V
List of Tables …………...……………………………………………… VIII
List of Figures …………..………………………………………........... IX
List of Appendix………………………………………………………. X
Abbreviations ……………………...…………………………………... XI
1. Introduction ……………………………………………...…….......... 1
1-1. Head and neck squamous cell carcinoma (HNSCC) …………… 1
1-1-1.Background of HNSCC…………………………………….. 1
1-1-2. Current treatments and therapies for HNSCC……………… 1
1-2. EGFR and HNSCC pathogenesis………...……………………… 2
1-2-1. EGFR……………………………………………………….. 2
1-2-2. EGFR downstream signaling……………………………….. 3
1-2-3. Expression of the EGFR is associated with HNSCC pathogenesis……………………………………………………….. 3
1-3. Two main anti-EGFR strategies…………………………………. 4
1-3-1. Monoclonal antibodies……………………………………... 4
1-3-2. Tyrosine kinase inhibitors………………………………….. 5
1-4. Mechanisms of EGFR inhibitors in cancer therapeutics………… 6
1-5. Novel EGFR tyrosine kinase inhibitor BPR3K007S0…………... 7
2. Objectives …………………………………………..……………..... 9
2-1. Specific aims ……………...…………………………………….. 9
2-2. Experimental designs ……………………………………………. 11
3. Materials and methods ……………………………………...……..... 14
3-1. Chemicals and reagents………………………………………….. 14
3-2. Cell lines and cell culture……………………………………….. 14
3-3. Morphological analysis…………………………………………. 14
3-4. Cell proliferation assay………………………………………….. 14
3-5. Clonogenic Assay………………………………………………... 15
3-6. Western Blot Analysis…………………………………………… 15
3-7. Cell cycle analysis……………………………………………….. 16
3-8. Cellular senescence assay……………………………………….. 16
3-9. Wound healing assay…………………………………………….. 16
3-10. Transwell invasion assay……………………………………….. 17
3-11. Gelatin zymography……………………………………………. 17
3-12. The in vivo human tumor xenograft analysis…………………... 17
3-13. The in vivo experimental metastasis model…………………...... 18
3-14. Hematoxylin and eosin stain (HE stain)………………………... 18
3-15. Immunohistochemistry (IHC) staining…………………………. 18
3-16. Statistically Analysis…………………………………………… 19
4. Results ………………………………………………………..…….. 20
4-1. BPR3K007S0 displays potent antiproliferative activity against human EGFR-overexpressing HNSCC cell line in vitro…………….. 20
4-2. BPR3K007S0 is more potent than gefitinib on the inhibition of EGFR phosphorylation in FaDu cells………………………………… 20
4-3. BPR3K007S0 inhibits cell growth rather than induce cell death... 20
4-4. BPR3K007S0 induces G1phase arrest and changed in expressed status of G1 regulators in FaDu cells…………………………………. 21
4-5. BPR3K007S0 induces a senescence-associated secretory phenotype in FaDu cells……………………………………………… 22
4-6. BPR3K007S0 is more effective than gefitinib on the inhibition of FaDu xenograft tumor growth in preclinical animal model……… 22
4-7. BPR3K007S0 significantly decreases activation of EGFR and cell proliferation in preclinical animal model………………………… 23
4-8. BPR3K007S0inhibits epithelial-mesenchymal transition (EMT) ………………………………………………………………... 23
4-9. BPR3K007S0 significantly reduces cell migration and invasion ability in FaDu cells…………………………………………………... 24
4-10. BPR3K007S0 does not decrease the expression level of MMPs………………………………………………………………… 24
4-11. BPR3K007S0 inhibits the incidence of pulmonary metastasis in preclinical animal model……………………………………………... 25
5. Discussion ………………………………………………………...... 26
6. Conclusion ………………………………………………………….. 31
References……………………………………………………………… 32
Tables…………………………………………………………………... 42
Figures……………………………………………………………......... 44
Appendix……………………………………………………….............. 63
Publication and award……………………………………...……........... 69

1 Masterson, L. et al. Molecular analyses of unselected head and neck cancer cases demonstrates that human papillomavirus transcriptional activity is positively associated with survival and prognosis. BMC cancer16, 367, doi:10.1186/s12885-016-2398-7 (2016).
2 Zhang, Q. et al. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Molecular cancer therapeutics6, 1414-1424, doi:10.1158/1535-7163.mct-06-0678 (2007).
3 Whang, S. N., Filippova, M. & Duerksen-Hughes, P. Recent Progress in Therapeutic Treatments and Screening Strategies for the Prevention and Treatment of HPV-Associated Head and Neck Cancer. Viruses7, 5040-5065, doi:10.3390/v7092860 (2015).
4 Parfenov, M. et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proceedings of the National Academy of Sciences of the United States of America111, 15544-15549, doi:10.1073/pnas.1416074111 (2014).
5 Su, Y. Y. et al. Betel nut chewing history is an independent prognosticator for smoking patients with locally advanced stage IV head and neck squamous cell carcinoma receiving induction chemotherapy with docetaxel, cisplatin, and fluorouracil. World journal of surgical oncology14, 86, doi:10.1186/s12957-016-0844-2 (2016).
6 Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. The New England journal of medicine363, 24-35, doi:10.1056/NEJMoa0912217 (2010).
7 Suh, Y., Amelio, I., Guerrero Urbano, T. & Tavassoli, M. Clinical update on cancer: molecular oncology of head and neck cancer. Cell death & disease5, e1018, doi:10.1038/cddis.2013.548 (2014).
8 Busch, C. J. et al. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget, doi:10.18632/oncotarget.9028 (2016).
9 Martinez-Useros, J. & Garcia-Foncillas, J. The challenge of blocking a wider family members of EGFR against head and neck squamous cell carcinomas. Oral oncology51, 423-430, doi:10.1016/j.oraloncology.2015.02.092 (2015).
10 Cassell, A. & Grandis, J. R. Investigational EGFR-targeted therapy in head and neck squamous cell carcinoma. Expert opinion on investigational drugs19, 709-722, doi:10.1517/13543781003769844 (2010).
11 Machiels, J. P. et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000prime reports6, 44, doi:10.12703/p6-44 (2014).
12 Modur, V., Thomas-Robbins, K. & Rao, K. HPV and CSC in HNSCC cisplatin resistance. Frontiers in bioscience (Elite edition)7, 58-66 (2015).
13 Rademaker-Lakhai, J. M. et al. Relationship between cisplatin administration and the development of ototoxicity. Journal of clinical oncology : official journal of the American Society of Clinical Oncology24, 918-924, doi:10.1200/jco.2006.10.077 (2006).
14 Echarri, M. J., Lopez-Martin, A. & Hitt, R. Targeted Therapy in Locally Advanced and Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma (LA-R/M HNSCC). Cancers8, doi:10.3390/cancers8030027 (2016).
15 Sepiashvili, L. et al. Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy. Molecular & cellular proteomics : MCP11, 1404-1415, doi:10.1074/mcp.M112.020933 (2012).
16 Pan, Q., Gorin, M. A. & Teknos, T. N. Pharmacotherapy of head and neck squamous cell carcinoma. Expert opinion on pharmacotherapy10, 2291-2302, doi:10.1517/14656560903136754 (2009).
17 Sacco, A. G. & Worden, F. P. Molecularly targeted therapy for the treatment of head and neck cancer: a review of the ErbB family inhibitors. OncoTargets and therapy9, 1927-1943, doi:10.2147/ott.s93720 (2016).
18 Baselga, J. & Swain, S. M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nature reviews. Cancer9, 463-475, doi:10.1038/nrc2656 (2009).
19 Reuter, C. W., Morgan, M. A. & Eckardt, A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. British journal of cancer96, 408-416, doi:10.1038/sj.bjc.6603566 (2007).
20 Rogers, S. J., Harrington, K. J., Rhys-Evans, P., P, O. C. & Eccles, S. A. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer metastasis reviews24, 47-69, doi:10.1007/s10555-005-5047-1 (2005).
21 Sasaki, T., Hiroki, K. & Yamashita, Y. The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed research international2013, 546318, doi:10.1155/2013/546318 (2013).
22 Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature reviews. Cancer5, 341-354, doi:10.1038/nrc1609 (2005).
23 Rubin Grandis, J. et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. Journal of the National Cancer Institute90, 824-832 (1998).
24 Dawson, J. P., Bu, Z. & Lemmon, M. A. Ligand-induced structural transitions in ErbB receptor extracellular domains. Structure (London, England : 1993)15, 942-954, doi:10.1016/j.str.2007.06.013 (2007).
25 Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology24, 2666-2672, doi:10.1200/jco.2005.04.8306 (2006).
26 Egloff, A. M. & Grandis, J. R. Targeting epidermal growth factor receptor and SRC pathways in head and neck cancer. Seminars in oncology35, 286-297, doi:10.1053/j.seminoncol.2008.03.008 (2008).
27 Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene366, 2-16, doi:10.1016/j.gene.2005.10.018 (2006).
28 Grandis, J. R. & Tweardy, D. J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer research53, 3579-3584 (1993).
29 Licitra, L. et al. Evaluation of EGFR gene copy number as a predictive biomarker for the efficacy of cetuximab in combination with chemotherapy in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: EXTREME study. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO22, 1078-1087, doi:10.1093/annonc/mdq588 (2011).
30 Loeffler-Ragg, J. et al. Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. European journal of cancer (Oxford, England : 1990)42, 109-111, doi:10.1016/j.ejca.2005.08.034 (2006).
31 Chiang, W. F. et al. Association of epidermal growth factor receptor (EGFR) gene copy number amplification with neck lymph node metastasis in areca-associated oral carcinomas. Oral oncology44, 270-276, doi:10.1016/j.oraloncology.2007.02.008 (2008).
32 Temam, S. et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology25, 2164-2170, doi:10.1200/jco.2006.06.6605 (2007).
33 Luo, M. & Fu, L. W. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors. American journal of cancer research4, 608-628 (2014).
34 Padfield, E., Ellis, H. P. & Kurian, K. M. Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma. Frontiers in oncology5, 5, doi:10.3389/fonc.2015.00005 (2015).
35 Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. The New England journal of medicine354, 567-578, doi:10.1056/NEJMoa053422 (2006).
36 Tang, C. et al. Concurrent cetuximab versus platinum-based chemoradiation for the definitive treatment of locoregionally advanced head and neck cancer. Head & neck37, 386-392, doi:10.1002/hed.23609 (2015).
37 Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. The New England journal of medicine359, 1116-1127, doi:10.1056/NEJMoa0802656 (2008).
38 Vermorken, J. B. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology25, 2171-2177, doi:10.1200/jco.2006.06.7447 (2007).
39 Burtness, B., Goldwasser, M. A., Flood, W., Mattar, B. & Forastiere, A. A. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology23, 8646-8654, doi:10.1200/jco.2005.02.4646 (2005).
40 Fung, C. & Grandis, J. R. Emerging drugs to treat squamous cell carcinomas of the head and neck. Expert opinion on emerging drugs15, 355-373, doi:10.1517/14728214.2010.497754 (2010).
41 Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P. & Davis, C. G. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Critical reviews in oncology/hematology38, 17-23 (2001).
42 Vermorken, J. B. et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. The Lancet. Oncology14, 697-710, doi:10.1016/s1470-2045(13)70181-5 (2013).
43 Schick, U., Gujral, D. M., Richards, T. M., Harrington, K. J. & Nutting, C. M. Zalutumumab in head and neck cancer. Expert opinion on biological therapy12, 119-125, doi:10.1517/14712598.2012.643864 (2012).
44 Machiels, J. P. et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. The Lancet. Oncology12, 333-343, doi:10.1016/s1470-2045(11)70034-1 (2011).
45 Boland, W. K. & Bebb, G. Nimotuzumab: a novel anti-EGFR monoclonal antibody that retains anti-EGFR activity while minimizing skin toxicity. Expert opinion on biological therapy9, 1199-1206, doi:10.1517/14712590903110709 (2009).
46 Basavaraj, C. et al. Nimotuzumab with chemoradiation confers a survival advantage in treatment-naive head and neck tumors over expressing EGFR. Cancer biology & therapy10, 673-681 (2010).
47 Jorge, S. E., Kobayashi, S. S. & Costa, D. B. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.]47, 929-939 (2014).
48 Chen, Y. M. Update of epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer. Journal of the Chinese Medical Association : JCMA76, 249-257, doi:10.1016/j.jcma.2013.01.010 (2013).
49 Pao, W. et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America101, 13306-13311, doi:10.1073/pnas.0405220101 (2004).
50 Argiris, A. et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology31, 1405-1414, doi:10.1200/jco.2012.45.4272 (2013).
51 Thomas, F. et al. Pilot study of neoadjuvant treatment with erlotinib in nonmetastatic head and neck squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research13, 7086-7092, doi:10.1158/1078-0432.ccr-07-1370 (2007).
52 Herchenhorn, D. et al. Phase I/II study of erlotinib combined with cisplatin and radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck. International journal of radiation oncology, biology, physics78, 696-702, doi:10.1016/j.ijrobp.2009.08.079 (2010).
53 Ou, S. H. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Critical reviews in oncology/hematology83, 407-421, doi:10.1016/j.critrevonc.2011.11.010 (2012).
54 Seiwert, T. Y. et al. A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO25, 1813-1820, doi:10.1093/annonc/mdu216 (2014).
55 Machiels, J. P. et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. The Lancet. Oncology16, 583-594, doi:10.1016/s1470-2045(15)70124-5 (2015).
56 Tan, C. S., Cho, B. C. & Soo, R. A. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor -mutant non-small cell lung cancer. Lung cancer (Amsterdam, Netherlands)93, 59-68, doi:10.1016/j.lungcan.2016.01.003 (2016).
57 Li, J. et al. Gefitinib ('Iressa', ZD1839), a selective epidermal growth factor receptor tyrosine kinase inhibitor, inhibits pancreatic cancer cell growth, invasion, and colony formation. International journal of oncology25, 203-210 (2004).
58 Grana, X. & Reddy, E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene11, 211-219 (1995).
59 Peng, D. et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer research56, 3666-3669 (1996).
60 Zhou, X. et al. Gefitinib inhibits the proliferation of pancreatic cancer cells via cell cycle arrest. Anatomical record (Hoboken, N.J. : 2007)292, 1122-1127, doi:10.1002/ar.20938 (2009).
61 Chu, Q. et al. Tumor-specific cytotoxicity and type of cell death induced by gefitinib in oral squamous cell carcinoma cell lines. Anticancer research29, 5023-5031 (2009).
62 Kupferman, M. E. et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene29, 2047-2059, doi:10.1038/onc.2009.486 (2010).
63 Lim, S. C. Expression of c-erbB receptors, MMPs and VEGF in head and neck squamous cell carcinoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie59 Suppl 2, S366-369 (2005).
64 Zuo, J. H. et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. Journal of cellular biochemistry112, 2508-2517, doi:10.1002/jcb.23175 (2011).
65 Lee, E. J., Whang, J. H., Jeon, N. K. & Kim, J. The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 (Iressa) suppresses proliferation and invasion of human oral squamous carcinoma cells via p53 independent and MMP, uPAR dependent mechanism. Annals of the New York Academy of Sciences1095, 113-128, doi:10.1196/annals.1397.015 (2007).
66 Libra, M. et al. Uterine cervical carcinoma: role of matrix metalloproteinases (review). International journal of oncology34, 897-903 (2009).
67 P, O. c. et al. Epidermal growth factor-like ligands differentially up-regulate matrix metalloproteinase 9 in head and neck squamous carcinoma cells. Cancer research60, 1121-1128 (2000).
68 van Roy, F. & Berx, G. The cell-cell adhesion molecule E-cadherin. Cellular and molecular life sciences : CMLS65, 3756-3788, doi:10.1007/s00018-008-8281-1 (2008).
69 Sun, Q., Prasad, R., Rosenthal, E. & Katiyar, S. K. Grape seed proanthocyanidins inhibit the invasive potential of head and neck cutaneous squamous cell carcinoma cells by targeting EGFR expression and epithelial-to-mesenchymal transition. BMC complementary and alternative medicine11, 134, doi:10.1186/1472-6882-11-134 (2011).
70 Ohnishi, Y., Watanabe, M., Yasui, H. & Kakudo, K. Effects of epidermal growth factor on the invasive activity and cytoskeleton of oral squamous cell carcinoma cell lines. Oncology letters7, 1439-1442, doi:10.3892/ol.2014.1946 (2014).
71 P, O. c., Wongkajornsilp, A., Rhys-Evans, P. H. & Eccles, S. A. Signaling pathways required for matrix metalloproteinase-9 induction by betacellulin in head-and-neck squamous carcinoma cells. International journal of cancer111, 174-183, doi:10.1002/ijc.20228 (2004).
72 Jimenez, L., Jayakar, S. K., Ow, T. J. & Segall, J. E. Mechanisms of Invasion in Head and Neck Cancer. Archives of pathology & laboratory medicine139, 1334-1348, doi:10.5858/arpa.2014-0498-RA (2015).
73 Coumar, M. S. et al. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. Journal of medicinal chemistry53, 4980-4988, doi:10.1021/jm1000198 (2010).
74 Rothenberg, S. M. & Ellisen, L. W. The molecular pathogenesis of head and neck squamous cell carcinoma. The Journal of clinical investigation122, 1951-1957 (2012).
75 Lee, J. & Moon, C. Current status of experimental therapeutics for head and neck cancer. Experimental biology and medicine (Maywood, N.J.)236, 375-389, doi:10.1258/ebm.2010.010354 (2011).
76 Jedlinski, A., Ansell, A., Johansson, A. C. & Roberg, K. EGFR status and EGFR ligand expression influence the treatment response of head and neck cancer cell lines. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology42, 26-36, doi:10.1111/j.1600-0714.2012.01177.x (2013).
77 Kushwaha, V. S. et al. Gefitinib, Methotrexate and Methotrexate plus 5-Fluorouracil as palliative treatment in recurrent head and neck squamous cell carcinoma. Cancer biology & therapy16, 346-351, doi:10.4161/15384047.2014.961881 (2015).
78 Zukawa, M., Nakano, M., Hirano, N., Mizuhashi, K. & Kanamori, M. The effectiveness of gefitinib on spinal metastases of lung cancer - report of two cases. Asian spine journal2, 109-113, doi:10.4184/asj.2008.2.2.109 (2008).
79 Yang, C. Y. & Meng, C. L. Regulation of PG synthase by EGF and PDGF in human oral, breast, stomach, and fibrosarcoma cancer cell lines. Journal of dental research73, 1407-1415 (1994).
80 Kok, S. H. et al. Establishment and characterization of a tumorigenic cell line from areca quid and tobacco smoke-associated buccal carcinoma. Oral oncology43, 639-647, doi:10.1016/j.oraloncology.2006.07.007 (2007).
81 Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America92, 9363-9367 (1995).
82 Mohanty, S. & Xu, L. Experimental metastasis assay. Journal of visualized experiments : JoVE, doi:10.3791/1942 (2010).
83 Macip, S. et al. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. The EMBO journal21, 2180-2188, doi:10.1093/emboj/21.9.2180 (2002).
84 Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. The Journal of pathology200, 448-464, doi:10.1002/path.1400 (2003).
85 Kwak, E. The role of irreversible HER family inhibition in the treatment of patients with non-small cell lung cancer. The oncologist16, 1498-1507, doi:10.1634/theoncologist.2011-0087 (2011).
86 Ciardiello, F. et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clinical cancer research : an official journal of the American Association for Cancer Research6, 2053-2063 (2000).
87 Schutze, C. et al. Combination of EGFR/HER2 tyrosine kinase inhibition by BIBW 2992 and BIBW 2669 with irradiation in FaDu human squamous cell carcinoma. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]183, 256-264, doi:10.1007/s00066-007-1696-z (2007).
88 Fu, S. et al. Combined Inhibition of Epidermal Growth Factor Receptor and Cyclooxygenase-2 as a Novel Approach to Enhance Radiotherapy. Journal of cell science & therapy1 (2011).
89 Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Experimental cell research25, 585-621 (1961).
90 Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes & development24, 2463-2479, doi:10.1101/gad.1971610 (2010).
91 Bringold, F. & Serrano, M. Tumor suppressors and oncogenes in cellular senescence. Experimental gerontology35, 317-329 (2000).
92 Hotta, K. et al. Gefitinib induces premature senescence in non-small cell lung cancer cells with or without EGFR gene mutation. Oncology reports17, 313-317 (2007).
93 Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-induced senescence in cancer. Journal of the National Cancer Institute102, 1536-1546, doi:10.1093/jnci/djq364 (2010).
94 Yao, D., Dai, C. & Peng, S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Molecular cancer research : MCR9, 1608-1620, doi:10.1158/1541-7786.mcr-10-0568 (2011).
95 Deryugina, E. I. & Quigley, J. P. Matrix metalloproteinases and tumor metastasis. Cancer metastasis reviews25, 9-34, doi:10.1007/s10555-006-7886-9 (2006).
96 Natalwala, A., Spychal, R. & Tselepis, C. Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World journal of gastroenterology14, 3792-3797 (2008).
97 Berx, G., Becker, K. F., Hofler, H. & van Roy, F. Mutations of the human E-cadherin (CDH1) gene. Human mutation12, 226-237, doi:10.1002/(sici)1098-1004(1998)12:4<226::aid-humu2>3.0.co;2-d (1998).
98 Lauring, J., Park, B. H. & Wolff, A. C. The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. Journal of the National Comprehensive Cancer Network : JNCCN11, 670-678 (2013).
99 Wu, H. T. et al. Expression of phosphorylated Akt in oral carcinogenesis and its induction by nicotine and alkaline stimulation. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology38, 206-213, doi:10.1111/j.1600-0714.2008.00659.x (2009).
100 Nathan, C. O. et al. Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer research67, 2160-2168, doi:10.1158/0008-5472.can-06-2449 (2007).
101 Concha-Benavente, F. et al. Identification of the Cell-Intrinsic and -Extrinsic Pathways Downstream of EGFR and IFNgamma That Induce PD-L1 Expression in Head and Neck Cancer. Cancer research76, 1031-1043, doi:10.1158/0008-5472.can-15-2001 (2016).
102 Harrington, K. et al. Randomised Phase II study of oral lapatinib combined with chemoradiotherapy in patients with advanced squamous cell carcinoma of the head and neck: rationale for future randomised trials in human papilloma virus-negative disease. European journal of cancer (Oxford, England : 1990)49, 1609-1618, doi:10.1016/j.ejca.2012.11.023 (2013).
103 Abdul Razak, A. R. et al. A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO24, 761-769, doi:10.1093/annonc/mds503 (2013).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *