帳號:guest(3.145.88.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉盈昱
作者(外文):Liu Ying Yu
論文名稱(中文):Development of immunofocusing virus-like particles as broadly protective influenza vaccines
論文名稱(外文):以免疫聚焦性類病毒顆粒研製廣效性流感疫苗
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh Chin
口試委員(中文):趙裕展
馬徹
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080598
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:82
中文關鍵詞:流行性感冒類病毒顆粒分子佐劑
外文關鍵詞:Influenza A virusVirus-like particlemolecular adjuvant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要研究利用免疫聚焦性 (immunofocusing) 策略,即醣遮蔽與去醣基化的方式,將抗原辨識的位置轉到保守的區域,進一步引發廣效性中和抗體。針對禽流感H5N1病毒的HA進行點突變,以產生不同免疫聚焦性抗原的類病毒顆粒和H5HA腺病毒載體,此外利用在M2融合FliC和Fc分子佐劑來增強免疫效果。本篇研究證實,小鼠在接種兩劑免疫聚焦性(dm: g127+g138和tm: g83+g127+g138)類病毒顆粒後,血清對抗不同支系H5N1病毒的中和性抗體可被顯著提升,尤其添加了FliC和Fc分子佐劑的效果會比wild type來的更有差異。然而(st2: N484A)免疫聚焦性類病毒顆粒在加上FliC和Fc分子佐劑即失去引起中和性抗體的功能。本論文進一步以腺病毒載體prime和類病毒顆粒boost的免疫方式,但是並不能產生比兩劑免疫聚焦性類病毒顆粒免疫更高的中和性抗體,且免疫血清並不能跨型中和pH1N1。因此更進一步利用同時添加不同類型的HA搭配GM-CSF和FliC來免疫小鼠,結果發現免疫小鼠血清可以同時保護H5H7或H1H5H7來達到廣效性中和抗體的成效。此研究成果可作為未來發展廣效型H5N1禽流感病毒疫苗和廣效型多重流感病毒疫苗的參考。
The study was aimed at developing the influenza virus-like particles (VLPs) containing the immunofocusing HA antigens that can “refocus” antibody responses from the immunodominant antigenic sites to the conserved cross-protective antigenic sites. The immunofocusing VLPs can thus elicit more broadly neutralizing antibodies against the heterologous clades of HPAI H5N1 viruses. The immunofocusing VLPs were constructed to the glycan masking on the HA globular head by double mutations (dm: g127+g138) or triple mutations (tm: g83+g127+g138) or the glycan unmasking on the HA2-stem (st2) region. Immunofocusing VLPs by M2 fusion with FliC (TLR5 agonist) or IgG-2a Fc fragment were obtained to enhance the VLP immunogenicity. Immunization results showed that the dm VLPs and the tm VLPs, but not the st2 VLPs, induced more potent broadly neutralizing antibodies against three heterologous HPAI H5N1 clades (Indonesia, clade 2.1.3.2; Qinghai, clade 2.2; Anhui, clade2.3.4). Furthermore, followed by using adenovirus vector priming VLPs boosting of the immunofocusing dm or tm HAs also resulted in increasing potent broadly neutralizing antibodies against three heterologous HPAI H5N1 clades (Indonesia, clade 2.1.3.2; Qinghai, clade 2.2; Anhui, clade2.3.4) However, the sera of Ad-Has priming VLPs boosting cannot cross protect hetersubtypic influenza A virus. Therefore, the dual-adjuvanted GM-CSF/FliC H5N1 VLP were further contructed to include H7 or H1H7 as multi-subtype influenza VLP vaccines. Results show that H5H7-GM-CSF/FliC VLPs can simultaneously against H5pp and H7pp. For H1H5H7-GM-CSF/FliC VLPs can simultaneously against pH1N1, H5pp, and H7pp It is our hope that these findings provide useful information for developing universal influenza vaccines.
Content
Development of immunofocusing virus-like particles as broadly protective influenza vaccines I
中文摘要 II
Abstract III
Acknowledgements IV
Abbreviations V
Content VI
1. Introduction 1
1.1 Overview of Influenza A viruses 1
1.2 Epidemiology of H1N1, H5N1, and H7N9 influenza viruses 3
1.3 Influenza virus-like particle vaccine technologies 7
1.4 Development of multi-subtype influenza VLP vaccine 10
1.5 N-linked glycosylation of influenza HA envelope proteins 12
1.6 Immunofocusing HA by N-linked glycan masking on Globular head 14
1.7 Immunofocusing HA by N-linked glycan unmasking on HA2 stem 15
1.8 Study goals for research 16
2. Materials and methods 17
2.1 Cell lines 17
2.2 Immunofocusing VLP construction design 17
2.3 Bac-to-Bac baculovirus expression system 18
2.3.1 Construction of recombinant plasmids 18
2.3.2 Generation of recombinant baculovirus 19
2.4 Production and purification of immunofocusing H5N1 and multi-subtype VLPs 20
2.5 SDS-PAGE and Western blot analyses 20
2.6 Hemagglutination (HA) assay and hemagglutination inhibition (HI) assay 21
2.7 Production and purification of KAN-1 H5HA proteins 21
2.8 Preparation of recombinant adenovirus 22
2.9 Plaque assay for recombinant adenovirus titration 23
2.10 Hemadsorption assay 23
2.11 Mouse Immunizations 24
2.12 Preparation of H5N1 pseudotyped particle (H5pp) 25
2.13 H5N1 pseudotyped particle (H5N1pp) neutralization assay 25
2.14 ELISA 26
2.15 Transmission electron microscopy (TEM) 27
2.16 pH1N1 and H3N2 virus plaque neutralization assay 27
2.17 Statistic analysis 28
3. Results 29
3.1 Construction and characterization of wt-VLPs, FliC-wt-VLPs, and Fc-wt-VLPs. 29
3.2 Construction and characterization of immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 30
3.3. Mouse immunizations with immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 31
3.4 Neutralizing antibodies elicited by two-dose immunofocusing FliC-VLP+FliC-VLP and Fc-VLP+Fc-VLP immunizations 32
3.5 Mouse immunizations with immunofocusing (dm, tm, st2) adenovirus vector priming and immunofocusing (dm, tm, st2) FliC-VLP and Fc-VLP boosting. 33
3.6 Neutralizing antibodies elicited by Ad-HA+FliC-VLP or Ad-HA+Fc-VLP prime-boost immunization 35
3.7 IC50 values ratio comparison of 2 doses immunofocusing VLPs and adenovirus prime VLPs boost immunization 36
3.8 pH1N1 hemagglutination inhibition and plaque neutralization assay 37
3.9 Bi- and tri-subtype GM-CSF/FliC-fused influenza VLPs expression and characterization 37
3.10 H5HA-specific total IgG titers elicited by multi-subtype VLPs immunization 38
3.11 Neutraling antibodies elicited by bi-subtype (H5H7) and tri-subtype (H1H5H7) GM-CSF/FliC VLPs 39
4. Discussion 40
5. References 42
6. Figure Legends 56
Fig. 1 Construction and characterization of wt-VLPs, FliC-wt-VLPs, and Fc-wt-VLPs 56
Fig. 2 Construction and characterization of immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 56
Fig. 3 Mouse immunizations with immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 56
Fig. 4 Neutralizing antibodies elicited by two-dose immunofocusing FliC-VLP+FliC-VLP and Fc-VLP+Fc-VLP immunizations 56
Fig. 5 Neutralizing antibodies elicited by two-dose FliC-VLP + FliC-VLP or Fc-VLP + Fc-VLP immunizations 57
Fig. 6 Hemadsorption assay for Ad-HA vector-infected 293A cells 57
Fig. 7 Mouse immunizations with adenovirus vector priming, followed by a booster of FliC-VLPs or Fc-VLPs 57
Fig. 8 Neutraling antibodies elicited by two-dose immunofocusing Ad-HA+FliC-VLP and Ad-HA+Fc-VLP immunizations 57
Fig. 9 Neutraling antibodies elicited by two-dose immunofocusing Ad-HA+FliC-VLP and Ad-HA+Fc-VLP immunizations 57
Fig. 10 IC50 values ratio comparison of two-dose immunofocusing FliC-VLP+FliC-VLP, Fc-VLP+Fc-VLP, Ad+FliC-VLP, and Ad+Fc-VLP immunizations 58
Fig. 11 pH1N1 hemagglutination inhibition and plaque neutralization assay 58
Fig. 12 Bi- and tri-subtype GM-CSF/FliC-fused influenza VLP expression and characterization 58
Fig. 13 Total IgG titers and cross-reactive HI and Neutralizing antibodies elicited by bi- and tri-subtype GM-CSF/FliC VLPs 58
Fig. S1 Construction, characterization, and hemagglutination assay of C3d-wt-VLPs and immunofocusing (dm, tm, st2) C3d-VLPs 59
Fig. S2 Mouse immunizations with immunofocusing (dm, tm, st2) C3d-VLPs 59
Fig. S3 Neutralizing antibodies elicited by two doses immunofocusing C3d-VLP+C3d-VLP immunizations 59
Fig. S4 Mouse immunizations with immunofocusing (dm, tm, st2) adenovirus vector priming and immunofocusing (dm, tm ,st2) C3d-VLP boosting 60
Fig. S5 Neutralizing antibodies elicited two-dose immunofocusing Ad-HA+C3d-VLP immunizations. 60
Fig. S6 pH1N1 hemagglutination inhibition and plaque neutralization assay 60
7. Figures 61
Fig. 1 Construction and characterization of wt-VLPs, FliC-wt-VLPs, and Fc-wt-VLPs 61
Fig. 2 Construction and characterization of immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 62
Fig. 3 Mouse immunizations with immunofocusing (dm, tm, st2) FliC-VLPs and Fc-VLPs 63
Fig. 4 Neutralizing antibodies elicited by two-dose immunofocusing FliC-VLP+FliC-VLP and Fc-VLP+Fc-VLP immunizations 64
Fig. 5 Neutralizing antibodies elicited by two-dose immunofocusing FliC-VLP+FliC-VLP or Fc-VLP+Fc-VLP immunizations 65
Fig. 6 Hemadsorption assay for Ad-HA vector-infected 293A cell 66
Fig. 7 Mouse immunizations with adenovirus vector priming, followed by a booster of FliC-VLPs or Fc-VLPs 67
Fig. 8 Neutraling antibodies elicited by two-dose immunofocusing Ad+FliC-VLP and Ad+Fc-VLP immunizations 68
Fig. 9 Neutraling antibodies elicited by two-dose immunofocusing Ad+FliC-VLP and Ad+Fc-VLP immunizations 69
Fig. 10 IC50 values ratio comparison of two-dose immunofocusing FliC-VLP+FliC-VLP, Fc-VLP+ Fc-VLP, Ad+FliC-VLP, and Ad+Fc-VLP immunizations 70
Fig. 11 pH1N1 hemagglutination inhibition and plaque neutralization assay. 71
Fig. 12 Bi- and tri-subtype GM-CSF/FliC-fused influenza VLP expression and characterization. 72
Fig. 13 Total IgG titers and cross-reactive HI and Neutralizing antibodies elicited by bi- and tri-subtype GM-CSF/FliC VLPs. 73
7. Supplementary Tables and Figures 74
Fig. S1 Construction, characterization, and hemagglutination assay of C3d-wt-VLPs and immunofocusing (dm, tm, st2) C3d-VLPs 77
Fig. S2 Mouse immunizations with immunofocusing (dm, tm, st2) C3d-VLPs 78
Fig. S3 Neutralizing antibodies elicited by two doses immunofocusing C3d-VLP+C3d-VLP immunizations 79
Fig. S4 Mouse immunizations with immunofocusing (dm, tm, st2) adenovirus vector priming and immunofocusing (dm, tm ,st2) C3d-VLP boosting 80
Fig. S5 Neutralizing antibodies elicited two-dose immunofocusing ad+C3d-VLP immunizations 81
Fig. S6 pH1N1 hemagglutination inhibition and plaque neutralization assay 82

Abozaid, K.G., Aly, M.M., Abdel-Moneim, A.S., El-Kady, M.F., 2016. Widespread of H5N1 infections in apparently healthy backyard poultry. Tropical animal health and production.
Alcalde-Cabero, E., Almazan-Isla, J., Garcia Lopez, F.J., Ara-Callizo, J.R., Avellanal, F., Casasnovas, C., Cemillan, C., Cuadrado, J.I., Duarte, J., Fernandez-Perez, M.D., Fernandez, O., Merino, J.A., Montero, R.G., Montero, D., Pardo, J., Rodriguez-Rivera, F.J., Ruiz-Tovar, M., de Pedro-Cuesta, J., 2016. Guillain-Barre syndrome following the 2009 pandemic monovalent and seasonal trivalent influenza vaccination campaigns in Spain from 2009 to 2011: outcomes from active surveillance by a neurologist network, and records from a country-wide hospital discharge database. BMC neurology 16, 75.
Apisarnthanarak, A., Kitphati, R., Thongphubeth, K., Patoomanunt, P., Anthanont, P., Auwanit, W., Thawatsupha, P., Chittaganpitch, M., Saeng-Aroon, S., Waicharoen, S., Apisarnthanarak, P., Storch, G.A., Mundy, L.M., Fraser, V.J., 2004. Atypical avian influenza (H5N1). Emerging infectious diseases 10, 1321-1324.
Badamchi-Zadeh, A., McKay, P.F., Korber, B.T., Barinaga, G., Walters, A.A., Nunes, A., Gomes, J.P., Follmann, F., Tregoning, J.S., Shattock, R.J., 2016. A Multi-Component Prime-Boost Vaccination Regimen with a Consensus MOMP Antigen Enhances Chlamydia trachomatis Clearance. Frontiers in immunology 7, 162.
Baz, M., Luke, C.J., Cheng, X., Jin, H., Subbarao, K., 2013. H5N1 vaccines in humans. Virus research 178, 78-98.
Beljanski, V., Chiang, C., Hiscott, J., 2015. The intersection between viral oncolysis, drug resistance, and autophagy. Biological chemistry 396, 1269-1280.
Bouvier, N.M., 2015. Animal models for influenza virus transmission studies: a historical perspective. Current opinion in virology 13, 101-108.
Bridle, B.W., Nguyen, A., Salem, O., Zhang, L., Koshy, S., Clouthier, D., Chen, L., Pol, J., Swift, S.L., Bowdish, D.M., Lichty, B.D., Bramson, J.L., Wan, Y., 2016. Privileged Antigen Presentation in Splenic B Cell Follicles Maximizes T Cell Responses in Prime-Boost Vaccination. Journal of immunology (Baltimore, Md. : 1950) 196, 4587-4595.
Bright, R.A., Carter, D.M., Daniluk, S., Toapanta, F.R., Ahmad, A., Gavrilov, V., Massare, M., Pushko, P., Mytle, N., Rowe, T., Smith, G., Ross, T.M., 2007. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25, 3871-3878.
Carignan, D., Therien, A., Rioux, G., Paquet, G., Gagne, M.E., Bolduc, M., Savard, P., Leclerc, D., 2015. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine 33, 7245-7253.
Chen, W., Zhong, Y., Qin, Y., Sun, S., Li, Z., 2012. The evolutionary pattern of glycosylation sites in influenza virus (H5N1) hemagglutinin and neuraminidase. PloS one 7, e49224.
Chiesa, M.D., Martensen, P.M., Simmons, C., Porakishvili, N., Justesen, J., Dougan, G., Roitt, I.M., Delves, P.J., Lund, T., 2001. Refocusing of B-cell responses following a single amino acid substitution in an antigen. Immunology 103, 172-178.
Chiu, F.F., Venkatesan, N., Wu, C.R., Chou, A.H., Chen, H.W., Lian, S.P., Liu, S.J., Huang, C.C., Lian, W.C., Chong, P., Leng, C.H., 2009. Immunological study of HA1 domain of hemagglutinin of influenza H5N1 virus. Biochemical and biophysical research communications 383, 27-31.
Chlanda, P., Mekhedov, E., Waters, H., Schwartz, C.L., Fischer, E.R., Ryham, R.J., Cohen, F.S., Blank, P.S., Zimmerberg, J., 2016. The hemifusion structure induced by Influenza virus haemagglutinin is determined by physical properties of the target membranes. Nature microbiology 2016.
Connor, R.J., Kawaoka, Y., Webster, R.G., Paulson, J.C., 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23.
Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G., Pinna, D., Minola, A., Vanzetta, F., Silacci, C., Fernandez-Rodriguez, B.M., Agatic, G., Bianchi, S., Giacchetto-Sasselli, I., Calder, L., Sallusto, F., Collins, P., Haire, L.F., Temperton, N., Langedijk, J.P., Skehel, J.J., Lanzavecchia, A., 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850-856.
D'Aoust, M.A., Couture, M.M., Charland, N., Trepanier, S., Landry, N., Ors, F., Vezina, L.P., 2010. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant biotechnology journal 8, 607-619.
Das, S.R., Hensley, S.E., David, A., Schmidt, L., Gibbs, J.S., Puigbo, P., Ince, W.L., Bennink, J.R., Yewdell, J.W., 2011. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proceedings of the National Academy of Sciences of the United States of America 108, E1417-1422.
Das, S.R., Puigbo, P., Hensley, S.E., Hurt, D.E., Bennink, J.R., Yewdell, J.W., 2010. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS pathogens 6, e1001211.
de Vries, R.D., Altenburg, A.F., Rimmelzwaan, G.F., 2016. Universal influenza vaccines: a realistic option? Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
Delves, P.J., Lund, T., Roitt, I.M., 1997. Can epitope-focused vaccines select advantageous immune responses? Molecular medicine today 3, 55-60.
DiLillo, D.J., Palese, P., Wilson, P.C., Ravetch, J.V., 2016. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. The Journal of clinical investigation 126, 605-610.
Duggal, A., Pinto, R., Rubenfeld, G., Fowler, R.A., 2016. Global Variability in Reported Mortality for Critical Illness during the 2009-10 Influenza A(H1N1) Pandemic: A Systematic Review and Meta-Regression to Guide Reporting of Outcomes during Disease Outbreaks. PloS one 11, e0155044.
Eichelberger, M.C., Wan, H., 2015. Influenza neuraminidase as a vaccine antigen. Current topics in microbiology and immunology 386, 275-299.
Ekiert, D.C., Bhabha, G., Elsliger, M.A., Friesen, R.H., Jongeneelen, M., Throsby, M., Goudsmit, J., Wilson, I.A., 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246-251.
Ekiert, D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H.J., Brandenburg, B., Vogels, R., Brakenhoff, J.P., Kompier, R., Koldijk, M.H., Cornelissen, L.A., Poon, L.L., Peiris, M., Koudstaal, W., Wilson, I.A., Goudsmit, J., 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843-850.
El Bakkouri, K., Descamps, F., De Filette, M., Smet, A., Festjens, E., Birkett, A., Van Rooijen, N., Verbeek, S., Fiers, W., Saelens, X., 2011. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. Journal of immunology (Baltimore, Md. : 1950) 186, 1022-1031.
Elbahesh, H., Schughart, K., 2016. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature. Scientific reports 6, 26437.
Engel, S., de Vries, M., Herrmann, A., Veit, M., 2012. Mutation of a raft-targeting signal in the transmembrane region retards transport of influenza virus hemagglutinin through the Golgi. FEBS letters 586, 277-282.
Floyd, D.L., Ragains, J.R., Skehel, J.J., Harrison, S.C., van Oijen, A.M., 2008. Single-particle kinetics of influenza virus membrane fusion. Proceedings of the National Academy of Sciences of the United States of America 105, 15382-15387.
Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M., Kemink, S.A., Munster, V., Kuiken, T., Rimmelzwaan, G.F., Schutten, M., Van Doornum, G.J., Koch, G., Bosman, A., Koopmans, M., Osterhaus, A.D., 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America 101, 1356-1361.
Frank, A.L., Taber, L.H., Glezen, W.P., Geyer, E.A., McIlwain, S., Paredes, A., 1983. Influenza B virus infections in the community and the family. The epidemics of 1976-1977 and 1979-1980 in Houston, Texas. American journal of epidemiology 118, 313-325.
Galarza, J.M., Latham, T., Cupo, A., 2005. Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. Viral immunology 18, 365-372.
Gambaryan, A.S., Karasin, A.I., Tuzikov, A.B., Chinarev, A.A., Pazynina, G.V., Bovin, N.V., Matrosovich, M.N., Olsen, C.W., Klimov, A.I., 2005. Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus research 114, 15-22.
Gannage, M., Dormann, D., Albrecht, R., Dengjel, J., Torossi, T., Ramer, P.C., Lee, M., Strowig, T., Arrey, F., Conenello, G., Pypaert, M., Andersen, J., Garcia-Sastre, A., Munz, C., 2009. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell host & microbe 6, 367-380.
Gao, H.N., Lu, H.Z., Cao, B., Du, B., Shang, H., Gan, J.H., Lu, S.H., Yang, Y.D., Fang, Q., Shen, Y.Z., Xi, X.M., Gu, Q., Zhou, X.M., Qu, H.P., Yan, Z., Li, F.M., Zhao, W., Gao, Z.C., Wang, G.F., Ruan, L.X., Wang, W.H., Ye, J., Cao, H.F., Li, X.W., Zhang, W.H., Fang, X.C., He, J., Liang, W.F., Xie, J., Zeng, M., Wu, X.Z., Li, J., Xia, Q., Jin, Z.C., Chen, Q., Tang, C., Zhang, Z.Y., Hou, B.M., Feng, Z.X., Sheng, J.F., Zhong, N.S., Li, L.J., 2013. Clinical findings in 111 cases of influenza A (H7N9) virus infection. The New England journal of medicine 368, 2277-2285.
Gao, H.N., Yao, H.P., Liang, W.F., Wu, X.X., Wu, H.B., Wu, N.P., Yang, S.G., Zhang, Q., Su, K.K., Guo, J., Zheng, S.F., Zhu, Y.X., Chen, H.L., Yuen, K.Y., Li, L.J., 2014. Viral genome and antiviral drug sensitivity analysis of two patients from a family cluster caused by the influenza A(H7N9) virus in Zhejiang, China, 2013. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 29, 254-258.
Garrity, R.R., Rimmelzwaan, G., Minassian, A., Tsai, W.P., Lin, G., de Jong, J.J., Goudsmit, J., Nara, P.L., 1997. Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope. Journal of immunology (Baltimore, Md. : 1950) 159, 279-289.
Gong, X., Yin, H., Shi, Y., He, X., Yu, Y., Guan, S., Kuai, Z., Haji, N.M., Haji, N.M., Kong, W., Shan, Y., 2016. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerging microbes & infections 5, e51.
Hanson, A., Imai, M., Hatta, M., McBride, R., Imai, H., Taft, A., Zhong, G., Watanabe, T., Suzuki, Y., Neumann, G., Paulson, J.C., Kawaoka, Y., 2015. Identification of Stabilizing Mutations in an H5 Hemagglutinin Influenza Virus Protein. Journal of virology 90, 2981-2992.
Hanson, S.R., Culyba, E.K., Hsu, T.L., Wong, C.H., Kelly, J.W., Powers, E.T., 2009. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proceedings of the National Academy of Sciences of the United States of America 106, 3131-3136.
Hardelid, P., Rait, G., Gilbert, R., Petersen, I., 2016. Factors associated with influenza vaccine uptake during a universal vaccination programme of preschool children in England and Wales: a cohort study. Journal of epidemiology and community health.
Harrison, S.C., 2008. Viral membrane fusion. Nature structural & molecular biology 15, 690-698.
Hashem, A.M., 2015. Prospects of HA-based universal influenza vaccine. BioMed research international 2015, 414637.
Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M., Aderem, A., 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103.
Haynes, J.R., 2009. Influenza virus-like particle vaccines. Expert review of vaccines 8, 435-445.
Henry Dunand, C.J., Leon, P.E., Huang, M., Choi, A., Chromikova, V., Ho, I.Y., Tan, G.S., Cruz, J., Hirsh, A., Zheng, N.Y., Mullarkey, C.E., Ennis, F.A., Terajima, M., Treanor, J.J., Topham, D.J., Subbarao, K., Palese, P., Krammer, F., Wilson, P.C., 2016. Both Neutralizing and Non-Neutralizing Human H7N9 Influenza Vaccine-Induced Monoclonal Antibodies Confer Protection. Cell host & microbe 19, 800-813.
Herfst, S., Schrauwen, E.J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V.J., Sorrell, E.M., Bestebroer, T.M., Burke, D.F., Smith, D.J., Rimmelzwaan, G.F., Osterhaus, A.D., Fouchier, R.A., 2012. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534-1541.
Hernandez, L.A., Miller, C.L., Vaughn, E.M., 2016. Particle and subunit-based hemagglutinin vaccines provide protective efficacy against H1N1 influenza in pigs. Veterinary microbiology 191, 35-43.
Honko, A.N., Mizel, S.B., 2005. Effects of flagellin on innate and adaptive immunity. Immunologic research 33, 83-101.
Horimoto, T., Kawaoka, Y., 2005. Influenza: lessons from past pandemics, warnings from current incidents. Nature reviews. Microbiology 3, 591-600.
Hsieh, Y.H., Huang, H.M., Lan, Y.C., 2016. On Temporal Patterns and Circulation of Influenza Virus Strains in Taiwan, 2008-2014: Implications of 2009 pH1N1 Pandemic. PloS one 11, e0154695.
Hu, J., Mo, Y., Wang, X., Gu, M., Hu, Z., Zhong, L., Wu, Q., Hao, X., Hu, S., Liu, W., Liu, H., Liu, X., Liu, X., 2015. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza A virus in avian species by inhibiting virus replication and host response. Journal of virology 89, 4126-4142.
Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M., Suzuki, Y., Maher, E.A., Neumann, G., Kawaoka, Y., 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428.
Ivanovic, T., Choi, J.L., Whelan, S.P., van Oijen, A.M., Harrison, S.C., 2013. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2, e00333.
Jagger, B.W., Wise, H.M., Kash, J.C., Walters, K.A., Wills, N.M., Xiao, Y.L., Dunfee, R.L., Schwartzman, L.M., Ozinsky, A., Bell, G.L., Dalton, R.M., Lo, A., Efstathiou, S., Atkins, J.F., Firth, A.E., Taubenberger, J.K., Digard, P., 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199-204.
Jiang, W., Yu, M., Li, J., Yu, J., Wang, S., Hou, G., Chen, J., 2015. [Effects of different gene segments of influenza virus on the growth of recombinants]. Wei sheng wu xue bao = Acta microbiologica Sinica 55, 1619-1625.
Kang, S.M., Kim, M.C., Compans, R.W., 2012. Virus-like particles as universal influenza vaccines. Expert review of vaccines 11, 995-1007.
Kang, S.M., Song, J.M., Quan, F.S., Compans, R.W., 2009. Influenza vaccines based on virus-like particles. Virus research 143, 140-146.
Karlsson Hedestam, G.B., Fouchier, R.A., Phogat, S., Burton, D.R., Sodroski, J., Wyatt, R.T., 2008. The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature reviews. Microbiology 6, 143-155.
Kawaoka, Y., Neumann, G., 2012. Influenza viruses: an introduction. Methods in molecular biology (Clifton, N.J.) 865, 1-9.
Khurana, S., Wu, J., Verma, N., Verma, S., Raghunandan, R., Manischewitz, J., King, L.R., Kpamegan, E., Pincus, S., Smith, G., Glenn, G., Golding, H., 2011. H5N1 virus-like particle vaccine elicits cross-reactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. Journal of virology 85, 10945-10954.
Kim, J.I., Park, M.S., 2012. N-linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei medical journal 53, 886-893.
Kim, M.C., Lee, Y.N., Hwang, H.S., Lee, Y.T., Ko, E.J., Jung, Y.J., Cho, M.K., Kim, Y.J., Lee, J.S., Ha, S.H., Kang, S.M., 2014. Influenza M2 virus-like particles confer a broader range of cross protection to the strain-specific pre-existing immunity. Vaccine 32, 5824-5831.
Kim, S.S., Upshur, M.A., Saotome, K., Sahu, I.D., McCarrick, R.M., Feix, J.B., Lorigan, G.A., Howard, K.P., 2015. Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein. Biochemistry 54, 7157-7167.
Kobayashi, Y., Suzuki, Y., 2012. Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. Journal of virology 86, 3446-3451.
Kornfeld, R., Kornfeld, S., 1985. Assembly of asparagine-linked oligosaccharides. Annual review of biochemistry 54, 631-664.
Krammer, F., 2016. Novel universal influenza virus vaccine approaches. Current opinion in virology 17, 95-103.
Krammer, F., Palese, P., 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Current opinion in virology 3, 521-530.
Krammer, F., Palese, P., Steel, J., 2015. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Current topics in microbiology and immunology 386, 301-321.
Lai, S., Qin, Y., Cowling, B.J., Ren, X., Wardrop, N.A., Gilbert, M., Tsang, T.K., Wu, P., Feng, L., Jiang, H., Peng, Z., Zheng, J., Liao, Q., Li, S., Horby, P.W., Farrar, J.J., Gao, G.F., Tatem, A.J., Yu, H., 2016. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data. The Lancet. Infectious diseases.
Landry, N., Ward, B.J., Trepanier, S., Montomoli, E., Dargis, M., Lapini, G., Vezina, L.P., 2010. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PloS one 5, e15559.
Ledgerwood, J.E., Wei, C.J., Hu, Z., Gordon, I.J., Enama, M.E., Hendel, C.S., McTamney, P.M., Pearce, M.B., Yassine, H.M., Boyington, J.C., Bailer, R., Tumpey, T.M., Koup, R.A., Mascola, J.R., Nabel, G.J., Graham, B.S., Team, V.R.C.S., 2011. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. The Lancet. Infectious diseases 11, 916-924.
Lee, Y.N., Lee, Y.T., Kim, M.C., Hwang, H.S., Lee, J.S., Kim, K.H., Kang, S.M., 2014. Fc receptor is not required for inducing antibodies but plays a critical role in conferring protection after influenza M2 vaccination. Immunology 143, 300-309.
Liao, H.Y., Hsu, C.H., Wang, S.C., Liang, C.H., Yen, H.Y., Su, C.Y., Chen, C.H., Jan, J.T., Ren, C.T., Chen, C.H., Cheng, T.J., Wu, C.Y., Wong, C.H., 2010. Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. Journal of the American Chemical Society 132, 14849-14856.
Lin, J.T., Li, C.G., Wang, X., Su, N., Liu, Y., Qiu, Y.Z., Yang, M., Chen, J.T., Fang, H.H., Dong, X.P., Yin, W.D., Feng, Z.J., 2009. Antibody persistence after 2-dose priming and booster response to a third dose of an inactivated, adjuvanted, whole-virion H5N1 vaccine. The Journal of infectious diseases 199, 184-187.
Lin, S.C., Lin, Y.F., Chong, P., Wu, S.C., 2012. Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PloS one 7, e39075.
Lin, S.C., Liu, W.C., Jan, J.T., Wu, S.C., 2014. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PloS one 9, e92822.
Lin, S.C., Liu, W.C., Lin, Y.F., Huang, Y.H., Liu, J.H., Wu, S.C., 2013. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses. Biotechnol J 8, 1315-1322.
Liu, J., Xiao, H., Wu, Y., Liu, D., Qi, X., Shi, Y., Gao, G.F., 2014. H7N9: a low pathogenic avian influenza A virus infecting humans. Current opinion in virology 5, 91-97.
Liu, S., Sha, J., Yu, Z., Hu, Y., Chan, T.C., Wang, X., Pan, H., Cheng, W., Mao, S., Zhang, R.J., Chen, E., 2016. Avian influenza virus in pregnancy. Reviews in medical virology.
Ludwig, C., Wagner, R., 2007. Virus-like particles-universal molecular toolboxes. Current opinion in biotechnology 18, 537-545.
Magadan, J.G., Altman, M.O., Ince, W.L., Hickman, H.D., Stevens, J., Chevalier, A., Baker, D., Wilson, P.C., Ahmed, R., Bennink, J.R., Yewdell, J.W., 2014. Biogenesis of influenza a virus hemagglutinin cross-protective stem epitopes. PLoS pathogens 10, e1004204.
Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D., 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America 101, 4620-4624.
Mbewana, S., Mortimer, E., Pera, F.F., Hitzeroth, II, Rybicki, E.P., 2015. Production of H5N1 Influenza Virus Matrix Protein 2 Ectodomain Protein Bodies in Tobacco Plants and in Insect Cells as a Candidate Universal Influenza Vaccine. Frontiers in bioengineering and biotechnology 3, 197.
Medina, R.A., Garcia-Sastre, A., 2011. Influenza A viruses: new research developments. Nature reviews. Microbiology 9, 590-603.
Medina, R.A., Stertz, S., Manicassamy, B., Zimmermann, P., Sun, X., Albrecht, R.A., Uusi-Kerttula, H., Zagordi, O., Belshe, R.B., Frey, S.E., Tumpey, T.M., Garcia-Sastre, A., 2013. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Science translational medicine 5, 187ra170.
Mizel, S.B., Bates, J.T., 2010. Flagellin as an adjuvant: cellular mechanisms and potential. Journal of immunology (Baltimore, Md. : 1950) 185, 5677-5682.
Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., Kawaoka, Y., 2013. Identification of novel influenza A virus proteins translated from PA mRNA. Journal of virology 87, 2455-2462.
Nara, P.L., Tobin, G.J., Chaudhuri, A.R., Trujillo, J.D., Lin, G., Cho, M.W., Levin, S.A., Ndifon, W., Wingreen, N.S., 2010. How can vaccines against influenza and other viral diseases be made more effective? PLoS biology 8, e1000571.
Nicholson, K.G., Wood, J.M., Zambon, M., 2003. Influenza. Lancet (London, England) 362, 1733-1745.
Pandey, J.P., 2011. Comment on "Flagellin as an adjuvant: cellular mechanisms and potential". Journal of immunology (Baltimore, Md. : 1950) 186, 1299; author reply 1299.
Pantophlet, R., Wilson, I.A., Burton, D.R., 2003. Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. Journal of virology 77, 5889-5901.
Peiris, J.S., de Jong, M.D., Guan, Y., 2007. Avian influenza virus (H5N1): a threat to human health. Clinical microbiology reviews 20, 243-267.
Porte, R., Fougeron, D., Munoz-Wolf, N., Tabareau, J., Georgel, A.F., Wallet, F., Paget, C., Trottein, F., Chabalgoity, J.A., Carnoy, C., Sirard, J.C., 2015. A Toll-Like Receptor 5 Agonist Improves the Efficacy of Antibiotics in Treatment of Primary and Influenza Virus-Associated Pneumococcal Mouse Infections. Antimicrobial agents and chemotherapy 59, 6064-6072.
Pushko, P., Pearce, M.B., Ahmad, A., Tretyakova, I., Smith, G., Belser, J.A., Tumpey, T.M., 2011. Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine 29, 5911-5918.
Pushko, P., Tumpey, T.M., Bu, F., Knell, J., Robinson, R., Smith, G., 2005. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23, 5751-5759.
Quan, F.S., Lee, Y.T., Kim, K.H., Kim, M.C., Kang, S.M., 2016. Progress in developing virus-like particle influenza vaccines. Expert review of vaccines, 1-13.
Richard, M., de Graaf, M., Herfst, S., 2014. Avian influenza A viruses: from zoonosis to pandemic. Future virology 9, 513-524.
Ritchey, M.B., Palese, P., Schulman, J.L., 1976. Mapping of the influenza virus genome. III. Identification of genes coding for nucleoprotein, membrane protein, and nonstructural protein. Journal of virology 20, 307-313.
Roldao, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., 2010. Virus-like particles in vaccine development. Expert review of vaccines 9, 1149-1176.
Russell, R.J., Kerry, P.S., Stevens, D.J., Steinhauer, D.A., Martin, S.R., Gamblin, S.J., Skehel, J.J., 2008. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America 105, 17736-17741.
Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Sekizuka, T., Shirato, K., Suzaki, Y., Ainai, A., Nakatsu, Y., Kanou, K., Nakamura, K., Suzuki, T., Komase, K., Nobusawa, E., Maenaka, K., Kuroda, M., Hasegawa, H., Kawaoka, Y., Tashiro, M., Takeda, M., 2014. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. Journal of virology 88, 5608-5616.
Scheiffele, P., Roth, M.G., Simons, K., 1997. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. The EMBO journal 16, 5501-5508.
Schmeisser, F., Adamo, J.E., Blumberg, B., Friedman, R., Muller, J., Soto, J., Weir, J.P., 2012. Production and characterization of mammalian virus-like particles from modified vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and neuraminidase. Vaccine 30, 3413-3422.
Schroeder, R., London, E., Brown, D., 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proceedings of the National Academy of Sciences of the United States of America 91, 12130-12134.
Schwartzman, L.M., Cathcart, A.L., Pujanauski, L.M., Qi, L., Kash, J.C., Taubenberger, J.K., 2015. An Intranasal Virus-Like Particle Vaccine Broadly Protects Mice from Multiple Subtypes of Influenza A Virus. mBio 6, e01044.
Shih, A.C., Hsiao, T.C., Ho, M.S., Li, W.H., 2007. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proceedings of the National Academy of Sciences of the United States of America 104, 6283-6288.
Shtyrya, Y.A., Mochalova, L.V., Bovin, N.V., 2009. Influenza virus neuraminidase: structure and function. Acta naturae 1, 26-32.
Skehel, J., 2009. An overview of influenza haemagglutinin and neuraminidase. Biologicals : journal of the International Association of Biological Standardization 37, 177-178.
Song, J.M., Van Rooijen, N., Bozja, J., Compans, R.W., Kang, S.M., 2011. Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America 108, 757-761.
Sriwilaijaroen, N., Suzuki, Y., 2012. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proceedings of the Japan Academy. Series B, Physical and biological sciences 88, 226-249.
Stansell, E., Desrosiers, R.C., 2010. Functional contributions of carbohydrate on AIDS virus glycoprotein. The Yale journal of biology and medicine 83, 201-208.
Steinhauer, D.A., 1999. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 258, 1-20.
Stephenson, I., Nicholson, K.G., Colegate, A., Podda, A., Wood, J., Ypma, E., Zambon, M., 2003. Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3 A/Duck/Singapore/97 vaccine in a primed human population. Vaccine 21, 1687-1693.
Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., Wilson, I.A., 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404-410.
Sui, J., Hwang, W.C., Perez, S., Wei, G., Aird, D., Chen, L.M., Santelli, E., Stec, B., Cadwell, G., Ali, M., Wan, H., Murakami, A., Yammanuru, A., Han, T., Cox, N.J., Bankston, L.A., Donis, R.O., Liddington, R.C., Marasco, W.A., 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature structural & molecular biology 16, 265-273.
Sun, J., Kudahl, U.J., Simon, C., Cao, Z., Reinherz, E.L., Brusic, V., 2014. Large-scale analysis of B-cell epitopes on influenza virus hemagglutinin - implications for cross-reactivity of neutralizing antibodies. Frontiers in immunology 5, 38.
Sun, X., Shi, Y., Lu, X., He, J., Gao, F., Yan, J., Qi, J., Gao, G.F., 2013. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell reports 3, 769-778.
Suzuki, Y., 2005. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28, 399-408.
Takai, T., 2002. Roles of Fc receptors in autoimmunity. Nature reviews. Immunology 2, 580-592.
Taubenberger, J.K., Morens, D.M., 2010. Influenza: the once and future pandemic. Public health reports (Washington, D.C. : 1974) 125 Suppl 3, 16-26.
Tekewe, A., Connors, N.K., Middelberg, A.P., Lua, L.H., 2016. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein science : a publication of the Protein Society.
Tiptiri-Kourpeti, A., Spyridopoulou, K., Pappa, A., Chlichlia, K., 2016. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacology & therapeutics.
Tobin, G.J., Trujillo, J.D., Bushnell, R.V., Lin, G., Chaudhuri, A.R., Long, J., Barrera, J., Pena, L., Grubman, M.J., Nara, P.L., 2008. Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26, 6189-6199.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O., 2012. A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America 109, 4269-4274.
Tretyakova, I., Hidajat, R., Hamilton, G., Horn, N., Nickols, B., Prather, R.O., Tumpey, T.M., Pushko, P., 2016. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology 487, 163-171.
Tretyakova, I., Pearce, M.B., Florese, R., Tumpey, T.M., Pushko, P., 2013. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology 442, 67-73.
Vasin, A.V., Temkina, O.A., Egorov, V.V., Klotchenko, S.A., Plotnikova, M.A., Kiselev, O.I., 2014. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus research 185, 53-63.
Vieths, S., Karamloo, F., Luttkopf, D., Scheurer, S., Foetisch, K., May, S., Muller, U., Altmann, F., Skov, P.S., Haustein, D., 1999. Recombinant allergens expressed in E. coli: benefits and drawbacks in the diagnosis of food allergies. Arbeiten aus dem Paul-Ehrlich-Institut (Bundesamt fur Sera und Impfstoffe) zu Frankfurt a.M, 159-168; discussion 169-170.
Vigerust, D.J., Shepherd, V.L., 2007. Virus glycosylation: role in virulence and immune interactions. Trends in microbiology 15, 211-218.
Wahome, N., Hickey, J.M., Volkin, D.B., Middaugh, C.R., 2016. Formulation Studies During Preclinical Development of Influenza Hemagglutinin and Virus-Like Particle Vaccine Candidates. Methods in molecular biology (Clifton, N.J.) 1404, 393-421.
Walker, L.M., Burton, D.R., 2010. Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Current opinion in immunology 22, 358-366.
Wang, W., Lu, B., Zhou, H., Suguitan, A.L., Jr., Cheng, X., Subbarao, K., Kemble, G., Jin, H., 2010. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. Journal of virology 84, 6570-6577.
Wei, C.J., Boyington, J.C., Dai, K., Houser, K.V., Pearce, M.B., Kong, W.P., Yang, Z.Y., Tumpey, T.M., Nabel, G.J., 2010a. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Science translational medicine 2, 24ra21.
Wei, C.J., Boyington, J.C., McTamney, P.M., Kong, W.P., Pearce, M.B., Xu, L., Andersen, H., Rao, S., Tumpey, T.M., Yang, Z.Y., Nabel, G.J., 2010b. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060-1064.
Wei, H.J., Chang, W., Lin, S.C., Liu, W.C., Chang, D.K., Chong, P., Wu, S.C., 2011. Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines. Vaccine 29, 7163-7172.
Wise, H.M., Foeglein, A., Sun, J., Dalton, R.M., Patel, S., Howard, W., Anderson, E.C., Barclay, W.S., Digard, P., 2009. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. Journal of virology 83, 8021-8031.
Wise, H.M., Hutchinson, E.C., Jagger, B.W., Stuart, A.D., Kang, Z.H., Robb, N., Schwartzman, L.M., Kash, J.C., Fodor, E., Firth, A.E., Gog, J.R., Taubenberger, J.K., Digard, P., 2012. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS pathogens 8, e1002998.
Wu, C.Y., Yeh, Y.C., Yang, Y.C., Chou, C., Liu, M.T., Wu, H.S., Chan, J.T., Hsiao, P.W., 2010. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PloS one 5, e9784.
Wu, Y., Wu, Y., Tefsen, B., Shi, Y., Gao, G.F., 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends in microbiology 22, 183-191.
Xu, M., Cao, C., Li, Q., Jia, P., Zhao, J., 2016. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China. International journal of environmental research and public health 13.
Yamaji, R., Yamada, S., Le, M.Q., Ito, M., Sakai-Tagawa, Y., Kawaoka, Y., 2015a. Mammalian adaptive mutations of the PA protein of highly pathogenic avian H5N1 influenza virus. Journal of virology 89, 4117-4125.
Yamaji, R., Yamada, S., Le, M.Q., Li, C., Chen, H., Qurnianingsih, E., Nidom, C.A., Ito, M., Sakai-Tagawa, Y., Kawaoka, Y., 2015b. Identification of PB2 mutations responsible for the efficient replication of H5N1 influenza viruses in human lung epithelial cells. Journal of virology 89, 3947-3956.
Yudin, M.H., 2014. Risk management of seasonal influenza during pregnancy: current perspectives. International journal of women's health 6, 681-689.
Zhang, Y., Zhang, Q., Kong, H., Jiang, Y., Gao, Y., Deng, G., Shi, J., Tian, G., Liu, L., Liu, J., Guan, Y., Bu, Z., Chen, H., 2013. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340, 1459-1463.
Zheng, M., Luo, J., Chen, Z., 2014. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 42, 251-262.
Zhirnov, O.P., Ikizler, M.R., Wright, P.F., 2002. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. Journal of virology 76, 8682-8689.
Zolla-Pazner, S., Cardozo, T., 2010. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nature reviews. Immunology 10, 527-535.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *