帳號:guest(3.146.34.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林柏宇
作者(外文):Lin,Po-Yu
論文名稱(中文):複合體SWI5-SFR1c與RAD51作用中SWI5 C端所扮演的角色
論文名稱(外文):Role of the SWI5 C-terminal loop in SWI5-SFR1c complex interaction with RAD51
指導教授(中文):呂平江
指導教授(外文):Lyu,Ping-Chiang
口試委員(中文):鄭惠春
冀宏源
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080589
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:swi5-sfr1蛋白質複合體rad51重組酶DNA同源重組修復
外文關鍵詞:swi5-sfr1 protein complexrad51 recombinaseDNA homologous recombination repair
相關次數:
  • 推薦推薦:0
  • 點閱點閱:391
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
蛋白質複合體SWI5-SFR1(S5S1)是一個調整DNA同源重組修復過程的調控因子,而DNA同源重組修復可以修復DNA雙股斷裂,當DNA雙股斷裂發生時,重組酶RAD51會與單股DNA結合,形成突觸前長絲,之後ATP與RAD51-DNA 複合體結合,幫助其穩定並使單股DNA互換。由於RAD51的ATP水解活性,ATP會被水解成ADP導致複合體活性下降,而S5S1會加速水解後產物ADP從RAD51釋放出來的速度。最近,SWI5的兩個關鍵活性序列F83與L85被發現參與S5S1和RAD51的相互作用,為了研究這個相互作用的機制,我們利用酵母菌的S5S1結晶結構(PDB編號:3VIQ)為模板,模擬老鼠的S5S1分子結構,我們發現F83與L85皆位於SWI5 C端末端的疏水性核心之中,並且兩者都面向結構內部。因此,我們假設S5S1與RAD51作用時,S5最末端的α螺旋結構會打開,露出F83與L85與RAD51反應。
為了證明上述的假設,我們將S5 C端最末端的D89點突變成半胱胺酸,使其與S1的C53形成雙硫鍵,將S5最末端的部分固定起來,並且將S1的C59點突變成絲胺酸來避免其他雙硫鍵的發生。我們分別利用圓二色光譜(Circular dichroism)與小角度X光散射來觀察突變蛋白質S5D89CS1cC59S的二級與三級結構。在圓二色光譜中,顯示S5S1c與S5D89CS1cC59S的圖譜主要由α螺旋結構所構成,藉由圓二色光譜光譜分析網站DichroWEB的分析,發現兩者的α螺旋結構構成比例相似。利用小角度X光散射,我們分析了S5S1c與S5D89CS1cC59S的特性資料,並做出兩者的重頭起算模型(ab initio model),結果顯示,S5S1c與S5D89CS1cC59S外觀相似。
最後,我們利用pull-down assay來分析S5S1c或S5D89CS1cC59S與RAD51的結合能力。比較S5S1c、雙硫鍵連接或未連接的S5D89CS1cC59S與RAD51的結合能力,結果顯示,具備雙硫鍵的S5D89CS1cC59S無法與RAD51作用,但若將雙硫鍵連接打斷(即F83與L85有可能暴露出來與RAD51作用),S5D89CS1cC59S就會回復部分的結合能力。結論是,S5 C端的最後α螺旋結構能不能打開會影響到S5S1與RAD51的作用,此項S5S1與RAD51結合機制的探討, 可作為後續研究DNA同源重組修復作用的重要參考。
SWI5-SFR1 protein complex (S5S1) has been proven as an accessory factor of homologous recombination repair, which can restore the DNA double strands break (DSB). When DNA double strands break (DSB) happen, RAD51 recombinases (RAD51) as a key protein form a presynaptic filament via binding to a single-stranded DNA. Then, ATP would bind to RAD51 to stabilize the RAD51-DNA complex and induce single-stranded DNA exchange. Due to the hydrolytic activity of RAD51, ATP would be hydrolyzed to ADP and the activity of RAD51-DNA complex will decrease, and S5S1 can promote the ADP releasing rate by interaction between RAD51.
Recently, two active sites, F83 and L85, on the C-terminus of SWI5 (S5) have been reported to participate in the interaction between S5S1 and RAD51. In order to investigate their interaction, we use molecular modeling with the template “S5S1c from yeast (which has a known crystal structure, PDB code: 3VIQ)” to construct the model, we found that S5F83 and S5L85 are located in the hydrophobic core in the ending of S5 and faced inside the core. Hence, we speculate the two positions would expose and attach to RAD51 when the bundle structure on the S5 C-terminal alpha-helix was separated.
To validate our hypothesis, first, we fix the C-terminal loop by creating the disulfide bond S5D89C-S1C53 on the complex. In addition, to prevent the other disulfide bond take place in the molecular, we also replaced the S1C59 to Ser. Next, we compared the secondary and tertiary structure by circular dichroism (CD) and small-angle X-ray scattering (SAXS). CD analysis showed that both S5S1c and S5D89CS1cC59S presented mainly alpha-helical structure, and their secondary structure compositions are similar by analyzed on the DichroWEB website. For SAXS experiment, we determined the structure characteristic of S5S1c and mutant, and constructed the ab initio model of them. The results showed no huge difference between S5S1c and mutant.
Finally, the binding ability was determined by pull-down assay. We compared S5S1c, loop-fixed and unfixed S5D89CS1cC59S (without and with 2-ME treatment) The results showed that, compare to S5S1c, loop-fixed S5D89CS1cC59S cannot interact to RAD51, and it restored partially binding ability when freed the loop which indicate S5F83 and S5L85 could expose and bind to RAD51. In conclusion, we speculate the opening of S5 C-terminal loop is essential when S5S1c interact to RAD51. Our study provide information regarding to S5S1c binding to RAD51.
Abstract 1
中文摘要 3
Acknowledgements 4
Contents 5
Abbreviations 8
Chapter 1. Introduction 10
1.1 DNA damage and homologous recombination repair 10
1.2 SWI5-SFR1 protein complex 12
1.3 Interaction of SWI5-SFR1 protein complex and RAD51 13
1.4 Small-angle X-ray scattering (SAXS) 14
1.4.1 SAXS background 14
1.4.2 Guinier Plot 15
1.4.3 Kratky plot 16
1.4.4 Pair distance distribution function 16
1.4.5 Dummy atom model 16
1.5 The aim of this thesis 17
Chapter 2. Materials and methods 18
2.1 Molecular modeling 18
2.2 Construction of the S5S1c mutant, S5D89CS1cC59S 18
2.3 Expression of S5S1c and S5D89CS1cC59S 19
2.4 Purification of S5S1c and S5D89CS1cC59S 19
2.5 Quantification of protein concentration 20
2.6 SDS-PAGE analysis 20
2.7 Circular dichroism spectroscopy 21
2.8 His tag remove 22
2.9 Small-Angle X-ray Scattering (SAXS) 22
2.10 Disulfide bond reduced test 23
2.11 Pull-down assay 24
Chapter3. Results and Discussion 25
3.1 Mouse S5S1c molecular model and structure characteristic 25
3.2 Study of S5 C-terminal end 25
3.3 Double mutagenesis, S5D89C and S1cC59S 27
3.4 Expression and purification of S5S1c and S5D89CS1cC59S 28
3.5 Protein characterization 29
3.5.1 Circular dichroism (CD) spectroscopy 29
3.5.2 SAXS data analysis 29
3.5.3 SAXS structural Analysis 30
3.6 Binding ability test 31
Chapter 4. Conclusions 33
Chapter 5. Figures and Table 35
Figure 1.1 The DNA homologous recombination repair process 35
Figure 1.2 Crystal structure of yeast SWI5SFR1c (DN177) protein complex 36
Figure 1.3 Sequence and secondary structure of yeast S5S1c 37
Figure 1.4 The schematic diagram of S5S1 interaction to RAD51 and ssDNA 38
Figure 1.5 Kratky plot diagram. 39
Figure 1.6 Illustration of pair distance distribution function 40
Figure 1.7 Running process of DAMMIF 41
Figure 1.8 Pull-down assay for binding ability of S5S1 and its variants 42
Figure 2.1 The sequencing map of S5S1c 43
Figure 2.2 Expression and purification process of S5D89CS1cC59S 45
Figure 2.3 His tag remove test of S5D89CS1cC59S 45
Table 2.1 primers for site-directed mutagenesis, S5D89C and S1cC59S 46
Figure 3.1 Molecular model of mouse S5S1c 47
Figure 3.2 Structure comparison of yeast and mouse S5S1c 48
Figure 3.3.1 The leucine zipper motif in yeast S5S1c 49
Figure 3.3.2 The leucine zipper motif in mouse S5S1c 50
Figure 3.4.1 Multiple sequence alignment of SWI5 and SFR1c 51
Figure 3.4.2 Sequence alignment of S5 between mouse and yeast and the last 40 residues alignment 52
Figure 3.5 Three-dimensional structure of hydrophobic core in yeast and mouse S5S1c 53
Figure 3.6 The critical residues mouse S5L85 and F83 and its conserved residues in yeast 54
Figure 3.7 Schematic diagram of the residues S5D89, S1C53 and S1C59 55
Figure 3.8 DNA gel electrophoresis of S5D89CS1c and S5D89CS1cC59S 56
Figure 3.9 DNA Sequence alignment of S5S1c and S5D89CS1cC59S. 57
Figure 3.10 Purification of S5D89CS1cC59S by HPLC 58
Figure 3.11 CD wavelength scans of S5S1c and S5D89CS1cC59S 59
Figure 3.12 HPLC prerun spectra 60
Figure 3.13 The SAXS of S5S1c (up) and S5D89CS1cC59S (down). 61
Figure 3.14 The Logarithmic scale of S5S1c and S5D89CS1cC59S 62
Figure 3.15 The Guinier plot of S5S1c and S5D89CS1cC59S 63
Figure 3.16 Kratky plots scatter diagram of S5S1c and S5D89CS1cC59S. 64
Figure 3.17 The Pair-distance distribution function of S5S1c and S5D89CS1cC59S 65
Figure 3.18 Dummy atom model of S5S1c and S5D89CS1cC59S 66
Figure 3.19 The ab initio envelop of S5S1c and S5D89CS1cC59S 67
Figure 3.20 Disulfide bond breaking test by 2-ME 68
Figure 3.21 Sample quality which was used in the binding ability test 69
Figure 3.22 The pull-down assay result of S5S1c and S5D89CS1cC59S 70
References 71

1. Khanna, K.K. and S.P. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection. Nature genetics, 2001. 27(3): p. 247-254.
2. Shen, Z. and J.A. Nickoloff, Mammalian homologous recombination repair and cancer intervention. DNA repair, genetic instability, and cancer. World Scientific Publishing Co., Singapore, 2007: p. 119-156.
3. Ward, J.F., Nature of lesions formed by ionizing radiation, in DNA damage and repair. 1998, Springer. p. 65-84.
4. Limoli, C.L., et al., UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization. Proceedings of the National Academy of Sciences, 2002. 99(1): p. 233-238.
5. Moore, J.K. and J.E. Haber, Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular and cellular biology, 1996. 16(5): p. 2164-2173.
6. Budman, J. and G. Chu, Processing of DNA for nonhomologous end‐joining by cell‐free extract. The EMBO journal, 2005. 24(4): p. 849-860.
7. Strathern, J.N., B.K. Shafer, and C.B. McGill, DNA synthesis errors associated with double-strand-break repair. Genetics, 1995. 140(3): p. 965-972.
8. Sung, P. and H. Klein, Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Reviews Molecular Cell Biology, 2006. 7(10): p. 739-750.
9. Mimitou, E.P. and L.S. Symington, Nucleases and helicases take center stage in homologous recombination. Trends in biochemical sciences, 2009. 34(5): p. 264-272.
10. Wold, M.S., Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annual review of biochemistry, 1997. 66(1): p. 61-92.
11. Shinohara, A., et al., Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nature genetics, 1993. 4(3): p. 239-243.
12. Liu, J., et al., Presynaptic filament dynamics in homologous recombination and DNA repair. Critical reviews in biochemistry and molecular biology, 2011. 46(3): p. 240-270.
13. Chen, Z., H. Yang, and N.P. Pavletich, Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature, 2008. 453(7194): p. 489-494.
14. Golub, E.I., et al., Interaction of human recombination proteins Rad51 and Rad54. Nucleic acids research, 1997. 25(20): p. 4106-4110.
15. Shibata, T., et al., Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8425-8432.
16. Duckett, D.R., et al., The structure of the Holliday junction, and its resolution. Cell, 1988. 55(1): p. 79-89.
17. Morgan, R.D., et al., Characterization of the specific DNA nicking activity of restriction endonuclease N. BstNBI. Biological chemistry, 2000. 381(11): p. 1123-1125.
18. Tilgner, K., et al., A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death & Differentiation, 2013. 20(8): p. 1089-1100.
19. Akamatsu, Y. and M. Jasin, Role for the mammalian Swi5-Sfr1 complex in DNA strand break repair through homologous recombination. PLoS Genet, 2010. 6(10): p. e1001160.
20. AKAMATSU, Yufuko, et al., Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proceedings of the National Academy of Sciences, 2003. 100(26): p.15770-15775.
21. Kokabu, Y., et al., Fission yeast Swi5-Sfr1 protein complex, an activator of Rad51 recombinase, forms an extremely elongated dogleg-shaped structure. Journal of Biological Chemistry, 2011. 286(50): p. 43569-43576.
22. Saikusa, K., et al., Characterisation of an intrinsically disordered protein complex of Swi5–Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering. Analyst, 2013. 138(5): p. 1441-1449.
23. Krylov, D. and C.R. Vinson, Leucine zipper. Els, 2001.
24. O'Shea, E.K., R. Rutkowski, and P.S. Kim, Evidence that the leucine zipper is a coiled coil. Science, 1989. 243(4890): p. 538-542.
25. Tsai, S.-P., et al., Rad51 presynaptic filament stabilization function of the mouse Swi5–Sfr1 heterodimeric complex. Nucleic acids research, 2012. 40(14): p. 6558-6569.
26. CHI, Peter, et al., Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA repair, 2006. 5(3): p. 381-391.
27. Su, G.-C., et al., Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex. Nucleic acids research, 2013: p. gkt879.
28. Su, G.-C., et al., Role of the RAD51–SWI5–SFR1 Ensemble in homologous recombination. Nucleic acids research, 2016: p. gkw375.
29. Xu, Y. and S. Matthews, TROSY NMR spectroscopy of large soluble proteins, in Modern NMR Methodology. 2011, Springer. p. 97-119.
30. Kratky, O., A survey, in Small angle X-ray scattering. 1982.
31. Blanchet, C.E. and D.I. Svergun, Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Physical Chemistry, 2013. 64.
32. Bragg, W.H. and W.L. Bragg, The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1913. 88(605): p. 428-438.
33. 鄭有舜, X-光小角度散射在軟物質研究上的應用. 物理雙月刊, 2004. 26(2): p. 416-424.
34. Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 1995. 28(6): p. 717-728.
35. Zimm, B.H., The scattering of light and the radial distribution function of high polymer solutions. The Journal of chemical physics, 1948. 16(12): p. 1093-1099.
36. Porod, G., General theory, in Small angle X-ray scattering. 1982.
37. Franke, D. and D.I. Svergun, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of applied crystallography, 2009. 42(2): p. 342-346.
38. Guex, N. and M.C. Peitsch, SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. electrophoresis, 1997. 18(15): p. 2714-2723.
39. Whitmore, L. and B. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic acids research, 2004. 32(suppl 2): p. W668-W673.
40. Sreerama, N. and R.W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical biochemistry, 2000. 287(2): p. 252-260.
41. Konarev, P.V., et al., ATSAS 2.1, a program package for small-angle scattering data analysis. Journal of applied crystallography, 2006. 39(2): p. 277-286.
42. Petoukhov, M.V., et al., New developments in the ATSAS program package for small-angle scattering data analysis. Journal of applied crystallography, 2012. 45(2): p. 342-350.
43. Konarev, P.V., et al., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography, 2003. 36(5): p. 1277-1282.
44. Volkov, V.V. and D.I. Svergun, Uniqueness of ab initio shape determination in small-angle scattering. Journal of applied crystallography, 2003. 36(3): p. 860-864.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *