帳號:guest(3.139.97.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張文涓
作者(外文):Chang, Wen Chuan
論文名稱(中文):Clarifying the role of phosphodiesterase in resveratrol mediated mitochondrial dynamics in senescent yeast cells
論文名稱(外文):探究磷酸二酯酶在白藜蘆醇對酵母菌衰老細胞的粒線體調控的機制中所扮演的角色
指導教授(中文):張壯榮
指導教授(外文):Chang,Chuang Rung
口試委員(中文):潘敏雄
高茂傑
口試委員(外文):Pan, Min Hsiung
Kao, Mou-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080586
出版年(民國):105
畢業學年度:104
論文頁數:49
中文關鍵詞:粒線體動態平衡衰老白藜蘆醇磷酸二酯酶
外文關鍵詞:Mitochondrial dynamicsSenescentResveratrolPhosphodiesterase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
粒線體在細胞中扮演很重要的角色,特別是在能量調控上。藉由粒線體分裂和融合的過程可以幫助粒線體維持正常的功能。失去功能的粒腺體可能跟老化的過程有關,並且在衰老的細胞中可以發現比較多碎裂型態的粒線體。白藜蘆醇是一種天然的多酚抗氧化物,根據我們實驗室的研究結果,白藜蘆醇可以減少碎裂型態的粒線體並且降低衰老細胞中活性氧化物的含量。然而白藜蘆醇的作用機制仍然在研究領域中有不同的爭辯。我們實驗室過去發現缺乏磷酸二酯酶後會抑制住白藜蘆醇對衰老的酵母菌細胞的效果,因此我們想進一步去探討磷酸二酯酶在白藜蘆醇對粒線體動態平衡的調控所扮演的角色。在我們的研究結果中發現將磷酸二酯酶過度表現會影響白藜蘆醇調控粒線體的型態,但卻不會影響白藜蘆醇降低活性氧化物的機制。與缺乏磷酸二酯酶的結果比較後,我們可以推論出白藜蘆醇在調控衰老酵母菌細胞中的粒腺體型態及降低活性氧化物的過程中是需要磷酸二酯酶來作用的。這些結果提供更多資訊讓我們了解白藜蘆醇在細胞中的作用機轉。
Mitochondria play critical roles in cells, especially in energy homeostasis. One way to regulate mitochondrial homeostasis and quality is via dynamic fission and fusion processes. Mitochondrial dysfunction may associate with aging process. Fragmentation of mitochondria was found in senescent cells. In addition, Resveratrol, one of the ROS scavengers, can reduce the ratio of the senescent yeast cells with fragmented mitochondria. Studies indicated that resveratrol inhibits the activity of phosphodiesterase to ameliorate the aging phenotype in mammalian cells. Whether resveratrol affects cellular activity through phosphodiesterase is still under extensive debate. Our previous results suggested that inhibiting phosphodiesterase compromise the effects of resveratrol in senescent yeast cells. We aim to elucidate the role of phosphodiesterase in the mechanism of resveratrol mediated-mitochondrial dynamics in senescent cells. The results showed overexpression of PDE2 affects resveratrol to reduce the ratio of senescent cells with fragmented mitochondria, but not interfere resveratrol to mediate superoxide removal. Comparing to the wild type and Δpde2 cells, PDE2 is required for the effect of resveratrol on mitochondrial dynamics in senescent yeast cells. The results provide more understanding of underlying mechanisms of how resveratrol acts in senescent yeast cells.
CONTENTS
口試委員審定書………………………………………………………………………#
致謝…………………………………………………………………………………….i
ABSTRACT…………………………………………………………………………ii
中文摘要…………………………………………………………………………….iii
CONTENTS………………………………………………………………………..iv
LIST OF FIGURES………………………………………………………………..viii
LIST OF TABLE…………………………………………………………………..xi
Chapter 1 Introduction……………………………………………………………...1
1.1 Mitochondria play critical roles in cells………………………………………....1
1.1.1 Mitochondrial dynamics regulates mitochondrial homeostasis and quality. .1
1.1.2 Mitochondrial dynamic in yeast……………………………………………..2
1.2 Aging process………………………………………………………………….....3
1.2.1 Senescence is the phenotype of aging. ………………………………….......3
1.2.2 Replicative & chronological senescence yeast model………………..….......3
1.2.3 Aging and mitochondria…………………………………………………......4
1.3 Resveratrol offers a broad range of health benefits………………………………..5
1.3.1 Resveratrol and senescence………………………………………….............5
1.3.2 The effect of resveratrol on mitochondrial function………………………...6
1.4 The degradation of cyclic nucleotide is mediated by phosphodiesterase. ………7
1.4.1 Phosphodiesterase regulates cAMP/PKA pathway. ………………………..7
1.4.2 Resveratrol inhibits the activity of cAMP-phosphodiesterase. …………….8
1.5 Specific aim……………………………………………………………………….9
Chapter 2 Materials and methods…………………………………………………10
2.1 Yeast strains, medium and reagent………………………………………………10
2.2 Experiment protocol ……………………………………………………………10
2.2.1 Construct PDE2 overexpression plasmid…………………………………..10
2.2.2 Yeast transformation………………………………………………………..10
2.2.3 Collection of senescent yeast cells………………………………………….11
2.2.4 DiOC6(3) staining to observe the mitochondrial morphology……………...12
2.2.5 Yeast genomic DNA extraction .……………………………………............13
2.2.6 Yeast RNA extraction .………………...……………………………............13
2.2.7 DNase I treatment…………………………………………………………...14
2.2.8 Reverse transcription polymerase chain reaction....…………………………15
2.2.9 Real time PCR………………………………………………………………15
2.2.10 Mitochondrial membrane potential detection …………………………......16
2.2.11 Mitochondrial superoxide level measurement ……………………………17
2.2.12 Cytosolic superoxide level measurement…………………………............17
2.2.13 Flow cytometry………………………………………………………….17
2.2.14 Statistical analysis…………………………………………………………18
Chapter 3 Result…………………………………………………………………….19
3.1 The effect of resveratrol on mitochondrial dynamics in senescent cells was affected by PDE2. ……………..…………………………………………………………19
3.1.1 Overexpression of PDE2 affects resveratrol to reverse mitochondrial
morphology in senescence cells. …………………………………….20
3.1.2 Resveratrol affects the mRNA level of fission/ fusion proteins in WT and PDE2
overexpressed senescent cells. ………………………………………………21
3.2 Resveratrol affects mitochondrial activities in PDE2 overexpressed senescent
yeast cells. ………………………………………………………………………22
3.2.1 PDE2 overexpressed senescent yeast cells had similar mitochondrial
membrane potential as WT cells. ………………………………………….22
3.2.2 Resveratrol decreases the mitochondrial superoxide level in both of WT and
PDE2 overexpressed senescent yeast cells. ………………………………..23
3.2.3 Resveratrol reduces the intracellular superoxide level in both of WT and
PDE2 overexpressed senescent yeast cells. ………………………………..24
Chapter 4 Discussion and conclusion……………………………………………..25
4.1 PDE2 is required in resveratrol mediated mitochondrial dynamics. ………….25
4.2 Resveratrol improves mitochondrial membrane potential not through PDE2. …26
4.3 PDE2 is required for resveratrol to mediate superoxide removal. ………………26
4.4 Conclusion………………………………………………………………………..27
Chapter 5 Perspective………………………………………………………………28
REFERENCE……………………………………………………………………….29
Ashrafi, G., Schlehe, J.S., LaVoie, M.J., and Schwarz, T.L. (2014). Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. The Journal of cell biology 206, 655-670.
Bass, T.M., Weinkove, D., Houthoofd, K., Gems, D., and Partridge, L. (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mechanisms of ageing and development 128, 546-552.
Beher, D., Wu, J., Cumine, S., Kim, K.W., Lu, S.C., Atangan, L., and Wang, M. (2009). Resveratrol is not a direct activator of SIRT1 enzyme activity. Chemical biology & drug design 74, 619-624.
Chan, D.C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
Chen, H., and Chan, D.C. (2005). Emerging functions of mammalian mitochondrial fusion and fission. Human molecular genetics 14 Spec No. 2, R283-289.
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Human molecular genetics 18, R169-176.
Chen, J.H., Hales, C.N., and Ozanne, S.E. (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic acids research 35, 7417-
7428.
Cheung, W.Y. (1970). Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an
activator. Biochemical and biophysical research communications 38, 533-538.
Chevtzoff, C., Vallortigara, J., Averet, N., Rigoulet, M., and Devin, A. (2005). The yeast
cAMP protein kinase Tpk3p is involved in the regulation of mitochondrial enzymatic content during growth. Biochimica et biophysica acta 1706, 117-125.
Childs, B.G., Durik, M., Baker, D.J., and van Deursen, J.M. (2015). Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine 21, 1424-1435.
Chung, J.H., Manganiello, V., and Dyck, J.R. (2012). Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends in cell biology 22, 546-554.
Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., et al. (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171.

Collado, M., Blasco, M.A., and Serrano, M. (2007). Cellular senescence in cancer and
aging. Cell 130, 223-233.
Corbi, G., Conti, V., Scapagnini, G., Filippelli, A., and Ferrara, N. (2012). Role of sirtuins, calorie restriction and physical activity in aging. Frontiers in bioscience (Elite edition) 4, 768-778.
Das, S., and Das, D.K. (2007). Anti-inflammatory responses of resveratrol. Inflammation & allergy drug targets 6, 168-173.
Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., Annese, T., Di Paola, M., Dell'aquila, C., De Mari, M., et al. (2014). Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochimica et biophysica acta 1842, 902-915.
Frank, M., Duvezin-Caubet, S., Koob, S., Occhipinti, A., Jagasia, R., Petcherski, A., Ruonala, M.O., Priault, M., Salin, B., and Reichert, A.S. (2012). Mitophagy is
triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochimica et biophysica acta 1823, 2297-2310.
Gülçin, İ. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative Food Science & Emerging Technologies 11, 210-218.
Gershon, H., and Gershon, D. (2000). The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mechanisms of ageing and development 120, 1-22.
Gourlay, C.W., and Ayscough, K.R. (2005). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. Journal of cell science 118, 2119-2132.
Halpin, D.M. (2008). ABCD of the phosphodiesterase family: interaction and differential activity in COPD. International journal of chronic obstructive pulmonary disease 3, 543-561.
Held, N.M., and Houtkooper, R.H. (2015). Mitochondrial quality control pathways as
determinants of metabolic health. BioEssays : news and reviews in molecular,
cellular and developmental biology 37, 867-876.
Henze, K., and Martin, W. (2003). Evolutionary biology: essence of mitochondria. Nature 426, 127-128.
Herzig, S., and Martinou, J.C. (2008). Mitochondrial dynamics: to be in good shape to survive. Current molecular medicine 8, 131-137.
Higashida, K., Kim, S.H., Jung, S.R., Asaka, M., Holloszy, J.O., and Han, D.H. (2013). Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: a reevaluation. PLoS biology 11, e1001603.
Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.
Kaeberlein, M., and Powers, R.W., 3rd (2007). Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing research reviews 6, 128-140.
Khacho, M., and S. Slack, R. (2015). Mitochondrial dynamics in neurodegeneration: from cell death to energetic states. AIMS Molecular Science 2, 161-174.
Kitada, M., Kume, S., Imaizumi, N., and Koya, D. (2011). Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway.
Diabetes 60, 634-643.
Knorre, D.A., Popadin, K.Y., Sokolov, S.S., and Severin, F.F. (2013). Roles of mitochondrial dynamics under stressful and normal conditions in yeast cells. Oxidative medicine and cellular longevity 2013, 139491.
Leadsham, J.E., and Gourlay, C.W. (2010). cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC cell biology 11, 92.
LeBleu, V.S., O'Connell, J.T., Gonzalez Herrera, K.N., Wikman, H., Pantel, K., Haigis, M.C., de Carvalho, F.M., Damascena, A., Domingos Chinen, L.T., Rocha, R.M., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature cell biology 16, 992-1003, 1001-1015.
Lee, H.C., and Wei, Y.H. (2012). Mitochondria and aging. Advances in experimental medicine and biology 942, 311-327.
Leonard, S.S., Xia, C., Jiang, B.H., Stinefelt, B., Klandorf, H., Harris, G.K., and Shi, X. (2003). Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochemical and biophysical research communications 309, 1017-1026.
Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. (2012). Replicative and chronological aging in Saccharomyces cerevisiae. Cell metabolism 16, 18-31.
Matt Kaeberlein, C.R.B., Brian K. Kennedy (2007). Recent Developments in Yeast Aging.
Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., et al. (2010). Caloric restriction
and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell death & disease 1, e10.
Mortimer, R.K., and Johnston, J.R. (1959). Life span of individual yeast cells. Nature 183, 1751-1752.
Murakami, C., and Kaeberlein, M. (2009). Quantifying yeast chronological life span by outgrowth of aged cells. Journal of visualized experiments : JoVE.
Omori, K., and Kotera, J. (2007). Overview of PDEs and their regulation. Circulation research 100, 309-327.
Pandey, P.R., Okuda, H., Watabe, M., Pai, S.K., Liu, W., Kobayashi, A., Xing, F.,Fukuda, K., Hirota, S., Sugai, T., et al. (2011). Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast cancer research and treatment 130, 387-398.
Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433.
Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell, W.R., Kamara, D., Minor, R.K., Perez, E., et al. (2008). Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell metabolism 8, 157-168.
PRYCE, P.L.R.J. (1977). The production of resveratrol by Vitis vinifera and other
members of the vitaceae as a response to infection or injury.
Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America 108, 10190-10195.
Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the National Academy of Sciences of the United States of America 101, 15998-16003.
Ruohonen, L., Aalto, M.K., and Keranen, S. (1995). Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. Journal of biotechnology 39, 193-203.

Seo, A.Y., Joseph, A.M., Dutta, D., Hwang, J.C., Aris, J.P., and Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of cell science 123, 2533-2542.
Sesaki, H., and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. The Journal of cell biology 147, 699-706.
Sikora, E., Bielak-Zmijewska, A., and Mosieniak, G. (2014). Cellular senescence in ageing, age-related disease and longevity. Current vascular pharmacology 12, 698-706.
Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996). Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633-642.
Smith, C.D., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A., and Markesbery, W.R. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America 88, 10540-10543.
Sohal, R.S., and Forster, M.J. (2014). Caloric restriction and the aging process: a critique. Free radical biology & medicine 73, 366-382.
Steffen, K.K., Kennedy, B.K., and Kaeberlein, M. (2009). Measuring replicative life span in the budding yeast. Journal of visualized experiments : JoVE.
Su, B., Wang, X., Zheng, L., Perry, G., Smith, M.A., and Zhu, X. (2010). Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica et biophysica acta 1802, 135-142.
Surh, Y.J., Hurh, Y.J., Kang, J.Y., Lee, E., Kong, G., and Lee, S.J. (1999). Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer letters 140, 1-10.
Tang, B.L. (2010). Resveratrol is neuroprotective because it is not a direct activator of Sirt1-A hypothesis. Brain research bulletin 81, 359-361.
Tosato, M., Zamboni, V., Ferrini, A., and Cesari, M. (2007). The aging process and potential interventions to extend life expectancy. Clinical interventions in aging 2, 401-412.
Veerasamy, M., Ford, G.A., Neely, D., Bagnall, A., MacGowan, G., Das, R., and Kunadian, V. (2014). Association of aging, arterial stiffness, and cardiovascular disease: a review. Cardiology in review 22, 223-232.
Vollert, S., Kaessner, N., Heuser, A., Hanauer, G., Dieckmann, A., Knaack, D., Kley, H.P., Beume, R., and Weiss-Haljiti, C. (2012). The glucose-lowering effects of the PDE4 inhibitors roflumilast and roflumilast-N-oxide in db/db mice. Diabetologia 55, 2779-2788.
Wasiak, S., Zunino, R., and McBride, H.M. (2007). Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. The Journal of cell biology 177, 439-450.
Weiss, E.L. (2012). Mitotic exit and separation of mother and daughter cells. Genetics 192, 1165-1202.
Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochimica et biophysica acta 1817, 1833-1838.
Yan, K., Gao, L.N., Cui, Y.L., Zhang, Y., and Zhou, X. (2016). The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Molecular medicine reports 13, 3715-3723.
Ye, K., Ji, C.B., Lu, X.W., Ni, Y.H., Gao, C.L., Chen, X.H., Zhao, Y.P., Gu, G.X., and Guo, X.R. (2010). Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. Journal of radiation research 51, 473-479.
Ziegler, D.V., Wiley, C.D., and Velarde, M.C. (2015). Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging cell 14, 1-7.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *