帳號:guest(3.142.55.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳弘毅
作者(外文):Chen, Hong I
論文名稱(中文):WNT3A可藉由增加BDNF, KLF7以及GAP43的表現量來促進皮質神經細胞的再生
論文名稱(外文):WNT3A promotes regeneration of cortical neurons in part through increasing expression of BDNF, KLF7 and GAP43
指導教授(中文):陳令儀
指導教授(外文):Chen, Linyi
口試委員(中文):黃兆棋
焦傳金
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:103080583
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:66
中文關鍵詞:皮質神經細胞再生
外文關鍵詞:regeneration of cortical neuronsWNT3A
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
直至今日,如何有效的幫助受損腦神經的再生,在醫學上仍然是個很大的難題。而導致神經無法有效率再生的情況主要歸因於抑制性的環境以及自身較差的生長能力。若能更加了解皮質神經細胞再生的機制將會對神經受損後的臨床治療有非常大的助益。在本篇論文中,我發現到WNT3A的表現量在懷孕18天胚鼠的大腦皮質神經細胞的再生過程中有上升的情形。而在隨後的實驗中,我們也證明將WNT3A加入受損的皮質神經中可以有效的幫助其再生。另外我們也找到三個WNT3A可能的標的基因,分別是BDNF、KLF7以及GAP43。此外,3D腦組織切片培養的方法也被利用於模擬腦中的生長環境,同時也用於評估WNT3A在腦切片組織的再生過程中所扮演的角色。
Regeneration of injured brain neurons remains to be a challenging medical issue. The inability of injured neurons to regenerate is mainly attributed to an inhibitory environment and poor intrinsic growth capacity. Better understanding of the neuronal regeneration mechanism would help the development of clinical treatment for brain injury. In this thesis, I have found that the expression level of WNT3A was increased during regeneration of injured embryonic day 18 cortical neurons. Treating injured cortical neurons with WNT3A effectively promotes neuronal regeneration. Three candidate target genes of WNT3A signaling, brain-derived neurotrophic factor, Krüppel-like factor 7 and growth associated protein 43, were identified. In addition, 3D brain slice culture was used to mimic the in vivo environment of brain and evaluate the role of WNT3A in neuronal regeneration.
Abstract i
摘要 ii
誌謝 iii
Index vii
Abbreviations ix
Introduction 1
Axonal regeneration in the peripheral nervous system 1
Axonal regeneration in the central nervous system 3
WNT signaling pathways 5
Krüppel-like factor 7 (KLF7) 8
Materials and Methods 10
Antibodies and reagents 10
Animal handling. Ethics statement 11
Primary cortical neurons culture 11
Experimental injury model 12
Analysis of neurite re-growth 13
Total RNA extraction and reverse transcription polymerase chain reaction (RT-PCR) 13
Real-time polymerase chain reaction (Q-PCR) 13
Protein extraction and western blotting 14
Chromatin immunoprecipitation (ChIP) analysis 15
Immunofluorescence staining 16
Brain slices culture 16
Immunofluorescence staining protocol for brain slices 17
Statistical analysis 17
Results 18
Neurite re-growth of primary cortical neurons after injury 18
Expression level of WNT3A was increased during regeneration 18
Treatment of WNT3A promotes neurite re-growth of injured cortical neurons 19
WNT3A activates signal transduction cascades through canonical WNT/β-catenin dependent pathway in cortical neurons 19
WNT3A promotes neurite re-growth in part through increasing the expression of BDNF and KLF7 20
WNT3A promotes neurite re-growth in part through increasing expression of GAP43 22
Neuronal regeneration of brain slice culture 22
Disscussion 24
Reference 27
Figures 38
Figure 1. Neurite re-growth of primary cortical neurons after injury 40
Figure 2. Expression level of WNT3A during neuronal regeneration 41
Figure 3. Treatment of WNT3A in injured cortical neurons 43
Figure 4. Protein levels of pGSK-3β and β-catenin after pre-treating WNT3A in injured cortical neurons 44
Figure 5. WNT3A promotes neurite re-growth in part through increasing expression of BDNF 45
Figure 6. Expression level of KLF7 in injured cortical neurons after pre-treating WNT3A 46
Figure 7. Expression level of GAP43 in injured cortical neurons after pre-treating WNT3A 47
Figure 8. Working model 48
Figure 9. Observation of neuronal regeneration in brain slice culture 51
Figure 10. Superarray analysis and RNA-sequencing data 52
Figure 11. WNT10A promotes neurite re-growth 53
Figure 12. KLF6 may be a target gene of WNT3A 54
Figure 13. Expression level of TrkB in injured cortical neurons after pre-treating WNT3A 55

1. Rotshenker, S. (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. Journal of neuroinflammation 8, 1
2. Fregnan, F., Muratori, L., Simões, A. R., Giacobini-Robecchi, M. G., and Raimondo, S. (2012) Role of inflammatory cytokines in peripheral nerve injury. Neural regeneration research 7, 2259
3. Vogel, D. Y., Heijnen, P. D., Breur, M., de Vries, H. E., Tool, A. T., Amor, S., and Dijkstra, C. D. (2014) Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. Journal of neuroinflammation 11, 1
4. Schäfer, M., Fruttiger, M., Montag, D., Schachner, M., and Martini, R. (1996) Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wld s mice. Neuron 16, 1107-1113
5. Waller, A. (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society of London 140, 423-429
6. Coleman, M. P., Conforti, L., Buckmaster, E. A., Tarlton, A., Ewing, R. M., Brown, M. C., Lyon, M. F., and Perry, V. H. (1998) An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proceedings of the National Academy of Sciences 95, 9985-9990
7. Huebner, E. A., and Strittmatter, S. M. (2009) Axon regeneration in the peripheral and central nervous systems. in Cell Biology of the Axon, Springer. pp 305-360
8. Liuzzi, F., and Tedeschi, B. (1991) Peripheral nerve regeneration. Neurosurgery Clinics of North America 2, 31-42
9. Silver, J., and Miller, J. H. (2004) Regeneration beyond the glial scar. Nature Reviews Neuroscience 5, 146-156
10. Mar, F. M., Bonni, A., and Sousa, M. M. (2014) Cell intrinsic control of axon regeneration. EMBO reports, e201337723
11. Zhang, B.-Y., and Zhou, F.-Q. (2013) Signaling pathways that regulate axon regeneration. Neuroscience bulletin 29, 411-420
12. Chierzi, S., Ratto, G. M., Verma, P., and Fawcett, J. W. (2005) The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. European Journal of Neuroscience 21, 2051-2062
13. Makwana, M., and Raivich, G. (2005) Molecular mechanisms in successful peripheral regeneration. Febs Journal 272, 2628-2638
14. Raivich, G., and Makwana, M. (2007) The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain research reviews 53, 287-311
15. Guertin, A. D., Zhang, D. P., Mak, K. S., Alberta, J. A., and Kim, H. A. (2005) Microanatomy of axon/glial signaling during Wallerian degeneration. The Journal of neuroscience 25, 3478-3487
16. Hanz, S., and Fainzilber, M. (2006) Retrograde signaling in injured nerve--the axon reaction revisited. Journal of neurochemistry 99, 13-19
17. Cavalli, V., Kujala, P., Klumperman, J., and Goldstein, L. S. (2005) Sunday Driver links axonal transport to damage signaling. The Journal of cell biology 168, 775-787
18. Abe, N., and Cavalli, V. (2008) Nerve injury signaling. Current opinion in neurobiology 18, 276-283
19. Herdegen, T., Skene, P., and Bähr, M. (1997) The c-Jun transcription factor–bipotential mediator of neuronal death, survival and regeneration. Trends in neurosciences 20, 227-231
20. Miletic, G., Hanson, E. N., Savagian, C. A., and Miletic, V. (2004) Protein kinase A contributes to sciatic ligation-associated early activation of cyclic AMP response element binding protein in the rat spinal dorsal horn. Neuroscience letters 360, 149-152
21. Gao, Y., Deng, K., Hou, J., Bryson, J. B., Barco, A., Nikulina, E., Spencer, T., Mellado, W., Kandel, E. R., and Filbin, M. T. (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration ivo. Neuron 44, 609-621
22. Bomze, H. M., Bulsara, K. R., Iskandar, B. J., Caroni, P., and Skene, J. P. (2001) Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature neuroscience 4, 38-43
23. McPhail, L. T., Fernandes, K. J., Chan, C. C., Vanderluit, J. L., and Tetzlaff, W. (2004) Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Experimental neurology 188, 331-340
24. Caroni, P., Aigner, L., and Schneider, C. (1997) Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction. The Journal of cell biology 136, 679-692
25. Sachs, H. H., Schreiber, R., Shoemaker, S., Sabe, A., Reed, E., and Zigmond, R. (2007) Activating transcription factor 3 induction in sympathetic neurons after axotomy: response to decreased neurotrophin availability. Neuroscience 150, 887-897
26. Seijffers, R., Allchorne, A. J., and Woolf, C. J. (2006) The transcription factor ATF-3 promotes neurite outgrowth. Molecular and Cellular Neuroscience 32, 143-154
27. Dahlin, L., Johansson, F., Lindwall, C., and Kanje, M. (2009) Future perspective in peripheral nerve reconstruction. International review of neurobiology 87, 507-530
28. Tanabe, K., Bonilla, I., Winkles, J. A., and Strittmatter, S. M. (2003) Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. The Journal of neuroscience 23, 9675-9686
29. Bonilla, I. E., Tanabe, K., and Strittmatter, S. M. (2002) Small proline-rich repeat protein 1A is expressed by axotomized neurons and promotes axonal outgrowth. The Journal of neuroscience 22, 1303-1315
30. Qiu, J., Cafferty, W. B., McMahon, S. B., and Thompson, S. W. (2005) Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. The Journal of neuroscience 25, 1645-1653
31. Sheu, J. Y., Kulhanek, D. J., and Eckenstein, F. P. (2000) Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Experimental neurology 166, 392-402
32. Snider, W. D., Zhou, F.-Q., Zhong, J., and Markus, A. (2002) Signaling the pathway to regeneration. Neuron 35, 13-16
33. Liu, R.-Y., and Snider, W. D. (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. The Journal of neuroscience: the official journal of the Society for Neuroscience 21, RC164-RC164
34. Zigmond, R. E. (2012) Cytokines that promote nerve regeneration. Experimental neurology 238, 101
35. Zhong, J., Dietzel, I. D., Wahle, P., Kopf, M., and Heumann, R. (1999) Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. The Journal of neuroscience 19, 4305-4313
36. Yang, P., Wen, H., Ou, S., Cui, J., and Fan, D. (2012) IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. Experimental neurology 236, 19-27
37. Schweizer, U., Gunnersen, J., Karch, C., Wiese, S., Holtmann, B., Takeda, K., Akira, S., and Sendtner, M. (2002) Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult. The Journal of cell biology 156, 287-298
38. Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., Christ, F., and Schwab, M. E. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439
39. GrandPré, T., Nakamura, F., Vartanian, T., and Strittmatter, S. M. (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444
40. McKerracher, L. d., David, S., Jackson, D., Kottis, V., Dunn, R., and Braun, P. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805-811
41. Kottis, V., Thibault, P., Mikol, D., Xiao, Z. C., Zhang, R., Dergham, P., and Braun, P. E. (2002) Oligodendrocyte‐myelin glycoprotein (OMgp) is an inhibitor of neurite outgrowth. Journal of neurochemistry 82, 1566-1569
42. Benson, M. D., Romero, M. I., Lush, M. E., Lu, Q. R., Henkemeyer, M., and Parada, L. F. (2005) Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America 102, 10694-10699
43. Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., Love, C., Jones, E. Y., Kikutani, H., and Lubetzki, C. (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. The Journal of neuroscience 23, 9229-9239
44. Lee, J. K., Chan, A. F., Luu, S. M., Zhu, Y., Ho, C., Tessier-Lavigne, M., and Zheng, B. (2009) Reassessment of corticospinal tract regeneration in Nogo-deficient mice. The Journal of Neuroscience 29, 8649-8654
45. Sun, F., and He, Z. (2010) Neuronal intrinsic barriers for axon regeneration in the adult CNS. Current opinion in neurobiology 20, 510-518
46. Akbik, F., Cafferty, W. B., and Strittmatter, S. M. (2012) Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Experimental neurology 235, 43-52
47. Huber, A. B., Weinmann, O., Brösamle, C., Oertle, T., and Schwab, M. E. (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. The Journal of neuroscience 22, 3553-3567
48. Trapp, B. D. (1990) Myelin‐Associated Glycoprotein Location and Potential Functionsa. Annals of the New York Academy of Sciences 605, 29-43
49. Vargas, M. E., and Barres, B. A. (2007) Why is Wallerian degeneration in the CNS so slow? Annu. Rev. Neurosci. 30, 153-179
50. Wang, K. C., Koprivica, V., Kim, J. A., Sivasankaran, R., Guo, Y., Neve, R. L., and He, Z. (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941-944
51. Atwal, J. K., Pinkston-Gosse, J., Syken, J., Stawicki, S., Wu, Y., Shatz, C., and Tessier-Lavigne, M. (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322, 967-970
52. Fournier, A. E., GrandPre, T., and Strittmatter, S. M. (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341-346
53. Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R., and Filbin, M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767
54. Bartsch, U., Bandtlow, C. E., Schnell, L., Bartsch, S., Spillmann, A. A., Rubin, B. P., Hillenbrand, R., Schwab, D. M. E., and Schachner, M. (1995) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 15, 1375-1381
55. Li, M., Shibata, A., Li, C., Braun, P. E., McKerracher, L., Roder, J., Kater, S. B., and David, S. (1996) Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse. Journal of neuroscience research 46, 404-414
56. Prinjha, R., Moore, S. E., Vinson, M., Blake, S., Morrow, R., Christie, G., Michalovich, D., Simmons, D. L., and Walsh, F. S. (2000) Neurobiology: Inhibitor of neurite outgrowth in humans. Nature 403, 383-384
57. Oertle, T., van der Haar, M. E., Bandtlow, C. E., Robeva, A., Burfeind, P., Buss, A., Huber, A. B., Simonen, M., Schnell, L., and Brösamle, C. (2003) Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. The Journal of neuroscience 23, 5393-5406
58. Morgenstern, D. A., Asher, R. A., and Fawcett, J. W. (2001) Chondroitin sulphate proteoglycans in the CNS injury response. Progress in brain research 137, 313-332
59. Yiu, G., and He, Z. (2006) Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience 7, 617-627
60. Barritt, A., Davies, M., Marchand, F., Hartley, R., Grist, J., Yip, P., McMahon, S., and Bradbury, E. (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. The Journal of neuroscience 26, 10856-10867
61. Mckeon, R. J., Höke, A., and Silver, J. (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Experimental neurology 136, 32-43
62. Barbacid, M. (1994) The Trk family of neurotrophin receptors. Journal of neurobiology 25, 1386-1403
63. Cui, Q. (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Molecular neurobiology 33, 155-179
64. Reichardt, L. F. (2006) Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London B: Biological Sciences 361, 1545-1564
65. Zhou, F.-Q., Zhou, J., Dedhar, S., Wu, Y.-H., and Snider, W. D. (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897-912
66. Ye, J.-H., and Houle, J. D. (1997) Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Experimental neurology 143, 70-81
67. Bregman, B. S., McAtee, M., Dai, H. N., and Kuhn, P. L. (1997) Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Experimental neurology 148, 475-494
68. Barde, Y.-A., Leibrock, J., Lottspeich, F., Edgar, D., Yancopoulos, G., and Thoenen, H. (1993) Brain derived neurotrophic factor. Google Patents
69. Cunha, C., Brambilla, R., and Thomas, K. L. (2010) A simple role for BDNF in learning and memory? Frontiers in molecular neuroscience 3, 1
70. Panagiotaki, N., Dajas-Bailador, F., Amaya, E., Papalopulu, N., and Dorey, K. (2010) Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development 137, 4005-4015
71. Acheson, A., Conover, J. C., Fandl, J. P., DeChiara, T. M., Russell, M., Thadani, A., Squinto, S. P., Yancopoulos, G. D., and Lindsay, R. M. (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death.
72. Huang, E. J., and Reichardt, L. F. (2001) Neurotrophins: roles in neuronal development and function. Annual review of neuroscience 24, 677
73. Bekinschtein, P., Cammarota, M., Katche, C., Slipczuk, L., Rossato, J. I., Goldin, A., Izquierdo, I., and Medina, J. H. (2008) BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences 105, 2711-2716
74. Yamada, K., and Nabeshima, T. (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. Journal of pharmacological sciences 91, 267-270
75. Lindsay, R. M. (1988) Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. The Journal of neuroscience 8, 2394-2405
76. Xu, X. M., Guénard, V., Kleitman, N., Aebischer, P., and Bunge, M. B. (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Experimental neurology 134, 261-272
77. Tom, V. J., Sandrow-Feinberg, H. R., Miller, K., Domitrovich, C., Bouyer, J., Zhukareva, V., Klaw, M. C., Lemay, M. A., and Houlé, J. D. (2013) Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site. Experimental neurology 239, 91-100
78. Komiya, Y., and Habas, R. (2008) Wnt signal transduction pathways. Organogenesis 4, 68-75
79. Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., Weidinger, G., Puder, M., Daley, G. Q., and Moon, R. T. (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136-1147
80. Miller, J. R. (2002) The wnts. Genome Biol 3, 3001.3001-3001.3015
81. Nusse, R., and Varmust, H. E. (1992) Wnt Genes Review. Writ 2, 6
82. Holmen, S. L., Salic, A., Zylstra, C. R., Kirschner, M. W., and Williams, B. O. (2002) A novel set of Wnt-Frizzled fusion proteins identifies receptor components that activate β-catenin-dependent signaling. Journal of Biological Chemistry 277, 34727-34735
83. He, X., Semenov, M., Tamai, K., and Zeng, X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663-1677
84. Clevers, H. (2006) Wnt/β-catenin signaling in development and disease. Cell 127, 469-480
85. Habas, R., and Dawid, I. B. (2005) Dishevelled and Wnt signaling: is the nucleus the final frontier? Journal of biology 4, 2
86. Staal, F., and Clevers, H. (2000) Tcf/Lef transcription factors during T-cell development: unique and overlapping functions. The hematology journal 1, 3-6
87. MacDonald, B. T., Tamai, K., and He, X. (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental cell 17, 9-26
88. Gordon, M. D., and Nusse, R. (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. Journal of Biological Chemistry 281, 22429-22433
89. Sheldahl, L. C., Slusarski, D. C., Pandur, P., Miller, J. R., Kühl, M., and Moon, R. T. (2003) Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. The Journal of cell biology 161, 769-777
90. Kühl, M., Sheldahl, L. C., Malbon, C. C., and Moon, R. T. (2000) Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. Journal of Biological Chemistry 275, 12701-12711
91. Winklbauer, R., Medina, A., Swain, R. K., and Steinbeisser, H. (2001) Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856-860
92. Ishitani, T., Ninomiya-Tsuji, J., Nagai, S.-i., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., and Shibuya, H. (1999) The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399, 798-802
93. Aviles, E. C., and Stoeckli, E. T. (2016) Canonical wnt signaling is required for commissural axon guidance. Developmental neurobiology 76, 190-208
94. Fernández-Martos, C. M., González-Fernández, C., González, P., Maqueda, A., Arenas, E., and Rodríguez, F. J. (2011) Differential expression of Wnts after spinal cord contusion injury in adult rats. PloS one 6, e27000
95. Smolich, B., McMahon, J., McMahon, A., and Papkoff, J. (1993) Wnt family proteins are secreted and associated with the cell surface. Molecular Biology of the Cell 4, 1267-1275
96. Roelink, H., and Nusse, R. (1991) Expression of two members of the Wnt family during mouse development--restricted temporal and spatial patterns in the developing neural tube. Genes & development 5, 381-388
97. Muroyama, Y., Kondoh, H., and Takada, S. (2004) Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochemical and biophysical research communications 313, 915-921
98. Davidson, K. C., Jamshidi, P., Daly, R., Hearn, M. T., Pera, M. F., and Dottori, M. (2007) Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Molecular and Cellular Neuroscience 36, 408-415
99. David, M. D., Cantí, C., and Herreros, J. (2010) Wnt‐3a and Wnt‐3 differently stimulate proliferation and neurogenesis of spinal neural precursors and promote neurite outgrowth by canonical signaling. Journal of neuroscience research 88, 3011-3023
100. Lee, S., Tole, S., Grove, E., and McMahon, A. P. (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457-467
101. Osakada, F., Ooto, S., Akagi, T., Mandai, M., Akaike, A., and Takahashi, M. (2007) Wnt signaling promotes regeneration in the retina of adult mammals. The Journal of neuroscience 27, 4210-4219
102. Suh, H. I., Min, J., Choi, K. H., Kim, S. W., Kim, K. S., and Jeon, S. R. (2011) Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats. Acta neurochirurgica 153, 1003-1010
103. McConnell, B. B., and Yang, V. W. (2010) Mammalian Krüppel-like factors in health and diseases. Physiological reviews 90, 1337-1381
104. Laub, F., Aldabe, R., Friedrich, V., Ohnishi, S., Yoshida, T., and Ramirez, F. (2001) Developmental expression of mouse Krüppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Developmental biology 233, 305-318
105. Veldman, M. B., Bemben, M. A., and Goldman, D. (2010) Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Molecular and Cellular Neuroscience 43, 370-383
106. Moore, D. L., Blackmore, M. G., Hu, Y., Kaestner, K. H., Bixby, J. L., Lemmon, V. P., and Goldberg, J. L. (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326, 298-301
107. Laub, F., Lei, L., Sumiyoshi, H., Kajimura, D., Dragomir, C., Smaldone, S., Puche, A. C., Petros, T. J., Mason, C., and Parada, L. F. (2005) Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Molecular and cellular biology 25, 5699-5711
108. Laub, F., Dragomir, C., and Ramirez, F. (2006) Mice without transcription factor KLF7 provide new insight into olfactory bulb development. Brain research 1103, 108-113
109. Kajimura, D., Dragomir, C., Ramirez, F., and Laub, F. (2007) Identification of genes regulated by transcription factor KLF7 in differentiating olfactory sensory neurons. Gene 388, 34-42
110. Lei, L., Ma, L., Nef, S., Thai, T., and Parada, L. F. (2001) mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128, 1147-1158
111. Benowitz, L. I., and Routtenberg, A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends in neurosciences 20, 84-91
112. Van der Zee, C., Nielander, H. B., Vos, J. P., da Silva, S. L., Verhaagen, J., Oestreicher, A. B., Schrama, L. H., Schotman, P., and Gispen, W. H. (1989) Expression of growth-associated protein B-50 (GAP43) in dorsal root ganglia and sciatic nerve during regenerative sprouting. The Journal of Neuroscience 9, 3505-3512
113. Erzurumlu, R. S., Jhaveri, S., Moya, K. L., and Benowitz, L. I. (1989) Peripheral nerve regeneration induces elevated expression of GAP-43 in the brainstem trigeminal complex of adult hamsters. Brain Res 498, 135-139
114. Hoffman, P. N. (1989) Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 9, 893-897
115. Wang, X., Tsai, J.-W., LaMonica, B., and Kriegstein, A. R. (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nature neuroscience 14, 555-561
116. Kalcheva, N., Albala, J., O'Guin, K., Rubino, H., Garner, C., and Shafit-Zagardo, B. (1995) Genomic structure of human microtubule-associated protein 2 (MAP-2) and characterization of additional MAP-2 isoforms. Proceedings of the National Academy of Sciences 92, 10894-10898
117. Shin, R., Iwaki, T., Kitamoto, T., and Tateishi, J. (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues. Laboratory investigation; a journal of technical methods and pathology 64, 693-702
118. Leung, J. Y., Kolligs, F. T., Wu, R., Zhai, Y., Kuick, R., Hanash, S., Cho, K. R., and Fearon, E. R. (2002) Activation of AXIN2 Expression by β-Catenin-T Cell Factor A FEEDBACK REPRESSOR PATHWAY REGULATING Wnt SIGNALING. Journal of Biological Chemistry 277, 21657-21665
119. Frey, D., Laux, T., Xu, L., Schneider, C., and Caroni, P. (2000) Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. The Journal of cell biology 149, 1443-1454
120. Briona, L. K., Poulain, F. E., Mosimann, C., and Dorsky, R. I. (2015) Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Developmental biology 403, 15-21
121. Yamamoto, H., Sakane, H., Michiue, T., and Kikuchi, A. (2008) Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of β-catenin signaling. Developmental cell 15, 37-48
122. Kingsbury, T. J., and Krueger, B. K. (2007) Ca 2+, CREB and krüppel: A novel KLF7-binding element conserved in mouse and human TRKB promoters is required for CREB-dependent transcription. Molecular and Cellular Neuroscience 35, 447-455
123. Hung, C.-C., Lin, C.-H., Chang, H., Wang, C.-Y., Lin, S.-H., Hsu, P.-C., Sun, Y.-Y., Lin, T.-N., Shie, F.-S., and Kao, L.-S. (2016) Astrocytic GAP43 induced by the TLR4/NF-κB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. The Journal of Neuroscience 36, 2027-2043
124. Van Kesteren, R. E., Mason, M. R., MacGillavry, H. D., Smit, A. B., and Verhaagen, J. (2011) A gene network perspective on axonal regeneration. Frontiers in molecular neuroscience 4, 46
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *