帳號:guest(52.14.0.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾品文
作者(外文):Tseng, Pin Wen
論文名稱(中文):探討鮑氏不動桿菌 ATCC 19606 之 PBP1a、PBP1b 以及 PBP3 在 sulbactam 抑制其生長時所扮演的角色
論文名稱(外文):Investigation of the Role of PBP1a, PBP1b and PBP3 on Antibacterial Mechanism of Sulbactam Against Acinetobacter baumannii ATCC 19606
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan You
口試委員(中文):蘇世強
李寬容
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:103080573
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:37
中文關鍵詞:舒巴克坦鮑氏不動桿菌
外文關鍵詞:sulbactamAcinetobacter baumanniipenicillin-binding proteinPBPATCC 19606
相關次數:
  • 推薦推薦:0
  • 點閱點閱:275
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
由於長期濫用抗生素,使許多微生物產生多重抗藥性。有些細菌能產生乙內醯胺酶 (beta-lactamase) ,用以破壞乙內醯胺類抗生素 (beta-lactam antibiotic) ,因此科學家發展出乙內醯胺酶抑制劑 (beta-lactamase inhibitor),可與乙內醯胺酶產生不可逆的結合,使其無法破壞乙內醯胺類抗生素。乙內醯胺酶抑制劑與乙內醯胺類抗生素共同使用,單獨使用則無抗菌效果。但最近發現乙內醯胺類抑制劑 sulbactam 可抑制鮑氏不動桿菌生長。鮑氏不動桿菌 (Acinetobacter baumannii) 為一伺機性感染人類之病原菌,也是院內感染的主要菌種之一。此生長抑制作用的機制可能與青黴素結合蛋白 (penicillin-binding protein, PBP) 結合有關,但機制尚未明瞭。因此,本研究目的為探討 sulbactam 抑制鮑氏不動桿菌 ATCC 19606 生長的作用機制。首先我們由 sulbactam 對鮑氏不動桿菌產生之抑菌圈中篩選具有抗 sulbactam 能力之逆突變株 (sulbactam-resistant strain, SRS),並測試 sulbactam 對這些菌株之最低抑制濃度,結果顯示 SRS 抗 sulbactam 程度與野生株相比明顯上升。相較於 ATCC 19606,SRS 生長速度較慢,且菌體形狀較長,推測 sulbactam 在鮑氏不動桿菌的抑菌機制可能與細胞壁生合成有關。接著,我們分別測試了野生株與抗sulbactam株的 PBP與 sulbactam 的親和力,結果並無顯著差異。由於綠膿桿菌 (Pseudomonas aeruginosa) 的生長不受 sulbactam 影響,因此我們將綠膿桿菌 PAO1 的 pbp1a、pbp1b 及 pbp3,分別互補至鮑氏不動桿菌 ATCC 19606,並測試其對 sulbactam 之抗性。實驗結果顯示,表現綠膿桿菌 PBP 之鮑氏不動桿菌,其抗 sulbactam 的能力沒有改變。最後,我們比對鮑氏不動桿菌 ATCC 19606 及 SRSs 的 pbp1a、pbp1b 及 pbp3 之序列,結果顯示此三個基因之序列在 SRS 菌株中並無改變。因此,我們推論可能有除了pbp1a、pbp1b 及 pbp3 以外的基因參與sulbactam 抑制鮑氏不動桿菌 ATCC 19606 生長之機制。綜合上述的實驗結果,可協助日後對抑制鮑氏不動桿菌感染之相關研究。
Over the past several decades, the overuse of antibiotics leads to the development of multidrug resistance in pathogens. Many bacteria can resist beta-lactam antibiotics by disrupting the beta-lactam ring of the drugs with -lactamase. To counter the effects of -lactamase, scientists have developed -lactamase inhibitors which protect beta-lactam antibiotic from degradation by irreversible binding with -lactamase. Beta-lactamase inhibitors do not exhibit strong antibacterial activity if given alone. Interestingly, it was noted recently that sulbactam, a -lactamase inhibitor, can inhibit growth of Acinetobacterium baumannii, a human opportunistic pathogen, although the mechanism remains not clear. To explore the antibacterial mechanism of sulbactam, this study first isolated sulbactam resistant strains (SRSs) of A. baumannii ATCC 19606, and then determined their minimal inhibitory concentration of sulbactam. These sulbactam-resistant strains grew slower and appeared longer. Comparison of sulbactam affinity to penicillin-binding proteins between ATCC 19606 and SRSs showed no difference. Introduction of pbp1a, pbp1b and pbp3 gene of Pseudomonas aeruginosa PAO1, a sulbactam resistant bacterium, into A. baumannii ATCC 19606 individually did not confer the recipient sulbactam resistance. Sequence analysis of pbp1a, pbp1b and pbp3 gene of A. baumannii ATCC 19606 and its SRSs also revealed no difference. It conclusion, this study is unable to identify a direct role of PBP1a, PBP1b and PBP3 in growth inhibition of A. baumannii by sulbactam.
摘要 I
英文摘要 III
目錄 V
表目錄 VII
圖目錄 VIII
壹、 前言 1
貳、 材料與實驗方法 5
2.1. 菌株與生長環境 5
2.2. 紙錠擴散感受性實驗以及突變株篩選 5
2.3. 最小抑制濃度 (Minimal inhibitory concentration, MIC) 6
2.4. 生長曲線 6
2.5. 革蘭氏染色 6
2.6. 染色體DNA萃取 7
2.7. 聚合酶連鎖反應 8
2.8. 質體構築 8
2.9. 勝任細胞製備 9
2.10. 熱休克轉型法 10
2.11. 接合作用 10
2.12. 從鮑氏不動桿菌分離與細胞膜結合的PBP 12
2.13. 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 (SDS-PAGE) 13
2.14. 檢測 sulbactam 對PBP的親和性 14
參、 結果 15
3.1. Sulbactam 可抑制鮑氏不動桿菌 ATCC 19606 的生長 15
3.2. Sulbactam 對 SRSs 的最小抑制濃度較ATCC 19606高 15
3.3. SRSs的生長速率較 ATCC 19606 慢且菌體外型較長 16
3.4. Sulbactam 與PBP 結合的情況在ATCC 19606和 SRSs 相比沒有差異 17
3.5. 表現 PAO1 的 pbp 之 ATCC 19606 不具抗 sulbactam 的能力 17
3.6. SRSs 的 pbp1a 、pbp1b 以及 pbp3 基因序列與 ATCC 19606 相比沒有突變 18
肆、 討論 19
伍、 參考文獻 21
1. Baumann, P., Isolation of Acinetobacter from soil and water. J Bacteriol, 1968. 96(1): p. 39-42.
2. Jawad, A., et al., Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol, 1996. 34(12): p. 2881-7.
3. Espinal, P., S. Marti, and J. Vila, Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect, 2012. 80(1): p. 56-60.
4. Davis, K.A., et al., Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis, 2005. 11(8): p. 1218-24.
5. O'Shea, M.K., Acinetobacter in modern warfare. Int J Antimicrob Agents, 2012. 39(5): p. 363-75.
6. CORBELLA, X., et al., Emergence and Rapid Spread of Carbapenem Resistance during a Large and Sustained Hospital Outbreak of Multiresistant Acinetobacter baumannii. Clin Microbiol, 2000. 38: p. 4086-4095.
7. Alsan, M. and M. Klompas, Acinetobacter baumannii: an emerging and important pathogen, in JCOM. 2010. p. 363-367.
8. Maragakis, L.L. and T.M. Perl, Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clinical Infectious Diseases, 2008. 46(8): p. 1254-1263.
9. Ozgur, E.S., et al., Ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii: Risk factors, clinical features, and outcomes. American Journal of Infection Control, 2014. 42(2): p. 206-208.
10. BergogneBerezin, E. and K.J. Towner, Acinetobacter spp, as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clinical Microbiology Reviews, 1996. 9(2): p. 148-+.
11. Halstead, D.C., J. Abid, and M.J. Dowzicky, Antimicrobial susceptibility among Acinetobacter calcoaceticus-baumannii complex and Enterobacteriaceae collected as part of the Tigecycline Evaluation and Surveillance. Journal of infection, 2007. 55: p. 49-57.
12. Yang, M.J., Z.P. Hu, and F.P. Hu, Nosocomial meningitis caused by Acinetobacter baumannii: risk factors and their impact on patient outcomes and treatments. Future Microbiology, 2012. 7(6): p. 787-793.
13. Garnacho-Montero, J. and R. Amaya-Villar, Multiresistant Acinetobacter baumannii infections: epidemiology and management. Current Opinion in Infectious Diseases, 2010. 23(4): p. 332-339.
14. Karageorgopoulos, D.E. and M.E. Falagas, Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infectious Diseases, 2008. 8(12): p. 751-762.
15. Sampson, T.R., et al., Rapid Killing of Acinetobacter baumannii by Polymyxins Is Mediated by a Hydroxyl Radical Death Pathway. Antimicrobial Agents and Chemotherapy, 2012. 56(11): p. 5642-5649.
16. Lee, B., Conformation of Penicillin as a Transition-State Analog of Substrate of Peptidoglycan Transpeptidase. Journal of Molecular Biology, 1971. 61(2): p. 463-&.
17. Gehrlein, M., et al., Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy, 1991. 37(6): p. 405-12.
18. Buscher, K.H., et al., Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother, 1987. 31(5): p. 703-8.
19. Fernandez-Cuenca, F., et al., Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2003. 51(3): p. 565-574.
20. Kohler, T., et al., Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother, 1999. 43(2): p. 424-7.
21. Riccio, M.L., et al., Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother, 2000. 44(5): p. 1229-35.
22. Bush, K., G.A. Jacoby, and A.A. Medeiros, A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 1995. 39(6): p. 1211-33.
23. Bush, K., New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis, 2001. 32(7): p. 1085-9.
24. Liras, P., A. Rodriguez-Garcia, and J.F. Martin, Evolution of the clusters of genes for beta-lactam antibiotics: a model for evolutive combinatorial assembly of new beta-lactams. Int Microbiol, 1998. 1(4): p. 271-8.
25. Drawz, S.M. and R.A. Bonomo, Three decades of beta-lactamase inhibitors. Clin Microbiol Rev, 2010. 23(1): p. 160-201.
26. Abraham, E.P. and E. Chain, An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis, 1988. 10(4): p. 677-8.
27. Kirby, W.M.M., Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science, 1944. 99(2579): p. 452-453.
28. Williams, J.D., beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/cefoperazone. Clin Infect Dis, 1997. 24(3): p. 494-7.
29. Nathwani, D. and M.J. Wood, Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs, 1993. 45(6): p. 866-94.
30. Lode, H.M., Rational antibiotic therapy and the position of ampicillin/sulbactam. Int J Antimicrob Agents, 2008. 32(1): p. 10-28.
31. Temocin, F., et al., Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii. Braz J Microbiol, 2015. 46(4): p. 1119-24.
32. Chu, H., et al., Sulbactam-based therapy for Acinetobacter baumannii infection: a systematic review and meta-analysis. Braz J Infect Dis, 2013. 17(4): p. 389-94.
33. Greenberg, R.N., et al., Cefoperazone-sulbactam combination in the treatment of urinary tract infections: efficacy, safety, and effects on coagulation. Clin Ther, 1987. 10(1): p. 52-6.
34. Levin, A.S., et al., Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. International Journal of Antimicrobial Agents, 2003. 21(1): p. 58-62.
35. Kalin, G., et al., Comparison of colistin and colistin/sulbactam for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. Infection, 2014. 42(1): p. 37-42.
36. Wang, Y.C., et al., Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and tigecycline on biofilm-embedded Acinetobacter baumannii and biofilm architecture. Antimicrob Agents Chemother, 2016.
37. Bush, K., Beta-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev, 1988. 1(1): p. 109-23.
38. Higgins, P.G., et al., In vitro activities of the beta-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with beta-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother, 2004. 48(5): p. 1586-92.
39. Corbella, X., et al., Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother, 1998. 42(6): p. 793-802.
40. Urban, C., et al., Interaction of Sulbactam, Clavulanic Acid and Tazobactam with Penicillin-Binding Proteins of Imipenem-Resistant and Imipenem-Susceptible Acinetobacter-Baumannii. Fems Microbiology Letters, 1995. 125(2-3): p. 193-197.
41. Papp-Wallace, K.M., et al., Early Insights into the Interactions of Different beta-Lactam Antibiotics and beta-Lactamase Inhibitors against Soluble Forms of Acinetobacter baumannii PBP1a and Acinetobacter sp PBP3. Antimicrobial Agents and Chemotherapy, 2012. 56(11): p. 5687-5692.
42. Penwell, W.F., et al., Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2015. 59(3): p. 1685-1694.
43. Spratt, B.G. and A.B. Pardee, Penicillin-binding proteins and cell shape in E. coli. Nature, 1975. 254(5500): p. 516-7.
44. Sauvage, E., et al., The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev, 2008. 32(2): p. 234-58.
45. Ishino, F., et al., Dual Enzyme-Activities of Cell-Wall Peptidoglycan Synthesis, Peptidoglycan Transglycosylase and Penicillin-Sensitive Transpeptidase, in Purified Preparations of Escherichia-Coli Penicillin-Binding Protein-1a. Biochemical and Biophysical Research Communications, 1980. 97(1): p. 287-293.
46. Georgopapadakou, N.H., Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother, 1993. 37(10): p. 2045-53.
47. Basu, J., et al., Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J Bacteriol, 1992. 174(14): p. 4829-32.
48. Sauvage, E., et al., Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One, 2014. 9(5): p. e98042.
49. Ghuysen, J.M., Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol, 1991. 45: p. 37-67.
50. Massova, I. and S. Mobashery, Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother, 1998. 42(1): p. 1-17.
51. Penaloza-Vazquez, A., et al., Use of translational fusions to the maltose-binding protein to produce and purify proteins in Pseudomonas syringae and assess their activity in vivo. Mol Plant Microbe Interact, 1996. 9(7): p. 637-41.
52. Zhao, G., et al., BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother, 1999. 43(5): p. 1124-8.
53. Vashist, J., et al., Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Indian J Med Res, 2011. 133: p. 332-8.
54. English, A.R., et al., CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother, 1978. 14(3): p. 414-9.
55. Lin, C.H., et al., Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC 19606 studied by 2D-DIGE and mass spectrometry. Int J Antimicrob Agents, 2014. 44(1): p. 38-46.
56. Fisher, J.F., S.O. Meroueh, and S. Mobashery, Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev, 2005. 105(2): p. 395-424.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *