|
1. Baumann, P., Isolation of Acinetobacter from soil and water. J Bacteriol, 1968. 96(1): p. 39-42. 2. Jawad, A., et al., Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol, 1996. 34(12): p. 2881-7. 3. Espinal, P., S. Marti, and J. Vila, Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect, 2012. 80(1): p. 56-60. 4. Davis, K.A., et al., Multidrug-resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis, 2005. 11(8): p. 1218-24. 5. O'Shea, M.K., Acinetobacter in modern warfare. Int J Antimicrob Agents, 2012. 39(5): p. 363-75. 6. CORBELLA, X., et al., Emergence and Rapid Spread of Carbapenem Resistance during a Large and Sustained Hospital Outbreak of Multiresistant Acinetobacter baumannii. Clin Microbiol, 2000. 38: p. 4086-4095. 7. Alsan, M. and M. Klompas, Acinetobacter baumannii: an emerging and important pathogen, in JCOM. 2010. p. 363-367. 8. Maragakis, L.L. and T.M. Perl, Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clinical Infectious Diseases, 2008. 46(8): p. 1254-1263. 9. Ozgur, E.S., et al., Ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumannii: Risk factors, clinical features, and outcomes. American Journal of Infection Control, 2014. 42(2): p. 206-208. 10. BergogneBerezin, E. and K.J. Towner, Acinetobacter spp, as nosocomial pathogens: Microbiological, clinical, and epidemiological features. Clinical Microbiology Reviews, 1996. 9(2): p. 148-+. 11. Halstead, D.C., J. Abid, and M.J. Dowzicky, Antimicrobial susceptibility among Acinetobacter calcoaceticus-baumannii complex and Enterobacteriaceae collected as part of the Tigecycline Evaluation and Surveillance. Journal of infection, 2007. 55: p. 49-57. 12. Yang, M.J., Z.P. Hu, and F.P. Hu, Nosocomial meningitis caused by Acinetobacter baumannii: risk factors and their impact on patient outcomes and treatments. Future Microbiology, 2012. 7(6): p. 787-793. 13. Garnacho-Montero, J. and R. Amaya-Villar, Multiresistant Acinetobacter baumannii infections: epidemiology and management. Current Opinion in Infectious Diseases, 2010. 23(4): p. 332-339. 14. Karageorgopoulos, D.E. and M.E. Falagas, Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infectious Diseases, 2008. 8(12): p. 751-762. 15. Sampson, T.R., et al., Rapid Killing of Acinetobacter baumannii by Polymyxins Is Mediated by a Hydroxyl Radical Death Pathway. Antimicrobial Agents and Chemotherapy, 2012. 56(11): p. 5642-5649. 16. Lee, B., Conformation of Penicillin as a Transition-State Analog of Substrate of Peptidoglycan Transpeptidase. Journal of Molecular Biology, 1971. 61(2): p. 463-&. 17. Gehrlein, M., et al., Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy, 1991. 37(6): p. 405-12. 18. Buscher, K.H., et al., Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother, 1987. 31(5): p. 703-8. 19. Fernandez-Cuenca, F., et al., Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2003. 51(3): p. 565-574. 20. Kohler, T., et al., Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother, 1999. 43(2): p. 424-7. 21. Riccio, M.L., et al., Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother, 2000. 44(5): p. 1229-35. 22. Bush, K., G.A. Jacoby, and A.A. Medeiros, A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 1995. 39(6): p. 1211-33. 23. Bush, K., New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis, 2001. 32(7): p. 1085-9. 24. Liras, P., A. Rodriguez-Garcia, and J.F. Martin, Evolution of the clusters of genes for beta-lactam antibiotics: a model for evolutive combinatorial assembly of new beta-lactams. Int Microbiol, 1998. 1(4): p. 271-8. 25. Drawz, S.M. and R.A. Bonomo, Three decades of beta-lactamase inhibitors. Clin Microbiol Rev, 2010. 23(1): p. 160-201. 26. Abraham, E.P. and E. Chain, An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis, 1988. 10(4): p. 677-8. 27. Kirby, W.M.M., Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science, 1944. 99(2579): p. 452-453. 28. Williams, J.D., beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/cefoperazone. Clin Infect Dis, 1997. 24(3): p. 494-7. 29. Nathwani, D. and M.J. Wood, Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs, 1993. 45(6): p. 866-94. 30. Lode, H.M., Rational antibiotic therapy and the position of ampicillin/sulbactam. Int J Antimicrob Agents, 2008. 32(1): p. 10-28. 31. Temocin, F., et al., Synergistic effects of sulbactam in multi-drug-resistant Acinetobacter baumannii. Braz J Microbiol, 2015. 46(4): p. 1119-24. 32. Chu, H., et al., Sulbactam-based therapy for Acinetobacter baumannii infection: a systematic review and meta-analysis. Braz J Infect Dis, 2013. 17(4): p. 389-94. 33. Greenberg, R.N., et al., Cefoperazone-sulbactam combination in the treatment of urinary tract infections: efficacy, safety, and effects on coagulation. Clin Ther, 1987. 10(1): p. 52-6. 34. Levin, A.S., et al., Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. International Journal of Antimicrobial Agents, 2003. 21(1): p. 58-62. 35. Kalin, G., et al., Comparison of colistin and colistin/sulbactam for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. Infection, 2014. 42(1): p. 37-42. 36. Wang, Y.C., et al., Individual or combined effects of meropenem, imipenem, sulbactam, colistin, and tigecycline on biofilm-embedded Acinetobacter baumannii and biofilm architecture. Antimicrob Agents Chemother, 2016. 37. Bush, K., Beta-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev, 1988. 1(1): p. 109-23. 38. Higgins, P.G., et al., In vitro activities of the beta-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with beta-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother, 2004. 48(5): p. 1586-92. 39. Corbella, X., et al., Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother, 1998. 42(6): p. 793-802. 40. Urban, C., et al., Interaction of Sulbactam, Clavulanic Acid and Tazobactam with Penicillin-Binding Proteins of Imipenem-Resistant and Imipenem-Susceptible Acinetobacter-Baumannii. Fems Microbiology Letters, 1995. 125(2-3): p. 193-197. 41. Papp-Wallace, K.M., et al., Early Insights into the Interactions of Different beta-Lactam Antibiotics and beta-Lactamase Inhibitors against Soluble Forms of Acinetobacter baumannii PBP1a and Acinetobacter sp PBP3. Antimicrobial Agents and Chemotherapy, 2012. 56(11): p. 5687-5692. 42. Penwell, W.F., et al., Molecular Mechanisms of Sulbactam Antibacterial Activity and Resistance Determinants in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2015. 59(3): p. 1685-1694. 43. Spratt, B.G. and A.B. Pardee, Penicillin-binding proteins and cell shape in E. coli. Nature, 1975. 254(5500): p. 516-7. 44. Sauvage, E., et al., The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev, 2008. 32(2): p. 234-58. 45. Ishino, F., et al., Dual Enzyme-Activities of Cell-Wall Peptidoglycan Synthesis, Peptidoglycan Transglycosylase and Penicillin-Sensitive Transpeptidase, in Purified Preparations of Escherichia-Coli Penicillin-Binding Protein-1a. Biochemical and Biophysical Research Communications, 1980. 97(1): p. 287-293. 46. Georgopapadakou, N.H., Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother, 1993. 37(10): p. 2045-53. 47. Basu, J., et al., Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J Bacteriol, 1992. 174(14): p. 4829-32. 48. Sauvage, E., et al., Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One, 2014. 9(5): p. e98042. 49. Ghuysen, J.M., Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol, 1991. 45: p. 37-67. 50. Massova, I. and S. Mobashery, Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother, 1998. 42(1): p. 1-17. 51. Penaloza-Vazquez, A., et al., Use of translational fusions to the maltose-binding protein to produce and purify proteins in Pseudomonas syringae and assess their activity in vivo. Mol Plant Microbe Interact, 1996. 9(7): p. 637-41. 52. Zhao, G., et al., BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. Antimicrob Agents Chemother, 1999. 43(5): p. 1124-8. 53. Vashist, J., et al., Analysis of penicillin-binding proteins (PBPs) in carbapenem resistant Acinetobacter baumannii. Indian J Med Res, 2011. 133: p. 332-8. 54. English, A.R., et al., CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother, 1978. 14(3): p. 414-9. 55. Lin, C.H., et al., Bactericidal effect of sulbactam against Acinetobacter baumannii ATCC 19606 studied by 2D-DIGE and mass spectrometry. Int J Antimicrob Agents, 2014. 44(1): p. 38-46. 56. Fisher, J.F., S.O. Meroueh, and S. Mobashery, Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev, 2005. 105(2): p. 395-424.
|