帳號:guest(3.144.227.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳裕文
作者(外文):Chen, Yu Wen
論文名稱(中文):小GTP結合蛋白Rhb1調控白色念珠菌細胞壁完整性、生物膜的形成及抗藥性之研究
論文名稱(外文):The small GTPase Rhb1 modulates cell wall integrity, biofilm formation and drug resistance in Candida albicans
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung Yu
口試委員(中文):張壯榮
高茂傑
口試委員(外文):Chang, Chuang Rung
Kao, Mou Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:103080563
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:92
中文關鍵詞:白色念珠菌小GTP蛋白Rhb1細胞壁生物膜抗藥性
外文關鍵詞:Candida albicanssmall GTPase Rhb1cell wallbiofilmdrug resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
白色念珠菌是一種伺機性感染真菌,在健康人體的口腔及胃腸道等黏膜的表面上可以發現此種共生真菌。然而,隨著近年來免疫功能缺乏病人的增加,白色念珠菌經常造成嚴重的院內感染,並且有著很高的死亡率。探討其致病原因,是因為白色念珠菌擁有許多獨特的致病因子,例如:細胞黏附和生物膜形成。而此兩因子與菌體細胞壁結構和組成息息相關,更重要的是,這些特徵最後可能與抗藥性相關聯。白色念珠菌致病因子之合成與否經常受外界壓力及環境狀況所調控。根據先前的研究,白色念珠菌Rhb1是屬於Ras家族的小型G蛋白(Small G-protein),在TOR (target of rapamycin) 訊息傳導路徑上扮演著正向調控的角色,並且參與細胞壁及菌絲生長。本研究更進一步探討Rhb1對細胞壁、生物膜及抗藥性的影響,並研究其相關訊號傳導路徑。本研究發現將RHB1基因剃除後會造成細胞壁組成改變並活化許多細胞壁修補基因,而Mkc1激酶的活化也顯示Rhb1參與細胞壁完整性訊號的傳遞。使用caspofungin (glucan synthesis inhibitor)作為外在壓力的實驗,Rhb1確實藉由其下游的Mkc1來影響菌株的藥物感受性。另外,已知生物膜形成與細胞壁改變有密切的關係,本研究發現RHB1 在細胞黏附和生物膜形成扮演著負向調控的角色,這結果可能是RHB1 突變株降低了TOR激酶的活性並活化Mkc1所導致。雖然RHB1 突變株對細胞壁相關藥物感受性比較高,但有趣的是,它在針對細胞膜作用的藥物(如:Fluconazole)卻呈現抗藥性。白色念珠菌抗藥機制通常是藉由改變藥物作用目標,利用幫浦將藥物打出或啟動特殊訊號和路徑。我們發現RHB1突變株的幫浦基因表現量有所增加而且其Mkc1也有活化的現象,而這些結果可能和TOR訊號傳遞及細胞壁完整性有關。最後,以臨床菌株為實驗對象,抑制TOR的活性呈現出與RHB1突變株一樣的藥物耐受性,顯示氮源攝取和調控與白色念珠菌抗藥機制有相當大的關聯性,同時為白色念珠菌未來臨床治療提供嶄新的觀點。
Candida albicans is an important fungal pathogen of humans. It is generally harmless in healthy individuals, but can cause invasive and life-threatening infections particularly in immunocompromised patients. The first step for C. albicans to establish infection is to adhere the surface of host cells. Moreover, C. albicans adhesion is also the key step of biofilm formation on mucosal surfaces and medical devices. The cell wall of C. albicans plays a critical role in cell adhesion and pathogen-host interaction, and is essential for C. albicans to withstand environmental stresses, such as antifungal drugs. In this study, we focus on Rhb1, a member of the small G-protein of Ras superfamily. The RHB1 gene deletion mutant was sensitive to cell wall disrupting agents, Congo red and Calcofluor white, whereas was resistant to the antifungal drug, fluconazole. Moreover, our results showed that the RHB1 deletion causes the alteration of C. albicans cell wall components and activation of the Mkc1 kinase, the key component of the cell wall integrity (CWI) signaling pathway. Finally, we also demonstrated that RHB1 is closely related to cell adhesion and biofilm formation. Together, this study reveals new roles of RHB1 and enriches our understanding in pathogenesis of C. albicans, suggesting new strategies for the future treatment of fungal diseases.
中文摘要 I
Abstract II
致謝辭 III
Table of Contents IV
List of Tables VI
List of Figures VII


Chapter 1: Introduction 1
1.1. Candida albicans is an important fungal pathogen 2
1.2. The cell wall of C. albicans 3
1.2.1. Cell wall structure of C. albicans 3
1.2.2. Cell wall integrity in C. albicans 4
1.3. The virulence factors of C. albicans 4
1.3.1. C. albicans cell adhesins 5
1.3.2. C. albicans biofilm formation 5
1.3.3. C. albicans invasion and host response 6
1.4. C. albicans antifungal drug resistance 7
1.4.1. Antifungal drugs against C. albicans 7
1.4.2. Mechanisms of antifungal drug resistance in C. albicans 7
1.5. Rhb1 signaling pathway in C. albicans 9
1.5.1. The Rheb subfamily of small GTPase 9
1.5.2. Rhb1 in C. albicans 9
1.6. The aims of this study 10


Chapter 2: Materials and Methods 11
2.1. Strains and growth conditions 12
2.2. Antifungal susceptibility testing 12
2.3. Zymolyase assay 13
2.4. Propidium iodide staining 14
2.5. RNA isolation, RT-PCR and real-time quantitative PCR 14
2.6. Protein extraction and western blot 15
2.7. Cell surface hydrophobicity 16
2.8. Measuring carbohydrate content of the cell wall 17
2.9. Extraction and quantification of ergosterol content 18
3.0. Strain construction 18
3.1. Cell flocculation 19
3.2. Measurement of cell adhesion to polystyrene and biofilm formation 20
3.3. Biofilm observation by using scanning electron microscopy 20
3.4. Macrophage response 21


Chapter 3: Results 23
Part I: The Small GTPase Rhb1 modulates cell wall integrity, biofilm formation in Candida albicans 24
3.1.1. Rhb1 regulates cell wall integrity of C. albicans 25
3.1.2. Rhb1 induces cell wall damage responses. 26
3.1.3. Rhb1 influences caspofungin susceptibility through its regulation of the cell wall integrity pathway. 27
3.1.4. Rhb1 also affects cell adhesion and biofilm formation 29
Part II : Candida albicans small G-protein Rhb1 is involved in regulation of fluconazole susceptibility 32
3.2.1. Deletion of RHB1 confers resistance to cell membrane perturbing agents 33
3.2.2. Fluconazole resistance of the RHB1 deletion mutant may be due to the increased activity of efflux pumps 34
3.2.3. Alternation of ergosterol biosynthesis is not related to fluconazole resistance in the RHB1 deletion mutant 35
3.2.4. Rhb1 regulates fluconazole susceptibility through the Mkc1 MAPK pathway 37
3.2.5. Nutrient signaling influences fluconazole resistance of C. albicans 38


Chapter 4: Discussion 42
RHB1 and C. albicans cell wall integrity 43
RHB1 and C. albicans biofilm formation 46
C. albicans cell wall and its interaction with host cells 47
RHB1 and C. albicans fluconazole resistance 48
Final remarks 51
Reference 53
Results for Part I 67
Results for Part II 76
Appendix 84
1. Pfaller, M.A. and D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007. 20(1): p. 133-63.
2. Yang, Y.L., et al., The distribution of species and susceptibility of amphotericin B and fluconazole of yeast pathogens isolated from sterile sites in Taiwan. Med Mycol, 2010. 48(2): p. 328-34.
3. Zaoutis, T., Candidemia in children. Curr Med Res Opin, 2010. 26(7): p. 1761-8.
4. 台灣院內感染監視資訊系統2015年第2季監視報告. 衛生福利部疾病管制署.
5. Edmond, M.B., et al., Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis, 1999. 29(2): p. 239-44.
6. Vazquez, J.A., Optimal management of oropharyngeal and esophageal candidiasis in patients living with HIV infection. HIV AIDS (Auckl), 2010. 2: p. 89-101.
7. Rueping, M.J., J.J. Vehreschild, and O.A. Cornely, Invasive candidiasis and candidemia: from current opinions to future perspectives. Expert Opin Investig Drugs, 2009. 18(6): p. 735-48.
8. Reagan, D.R., et al., Evidence of nosocomial spread of Candida albicans causing bloodstream infection in a neonatal intensive care unit. Diagn Microbiol Infect Dis, 1995. 21(4): p. 191-4.
9. Sheng, W.H., et al., Comparative impact of hospital-acquired infections on medical costs, length of hospital stay and outcome between community hospitals and medical centres. J Hosp Infect, 2005. 59(3): p. 205-14.
10. Miller, L.G., R.A. Hajjeh, and J.E. Edwards, Jr., Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis, 2001. 32(7): p. 1110.
11. Nather, K. and C.A. Munro, Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett, 2008. 285(2): p. 137-45.
12. Aguilar-Uscanga, B. and J.M. Francois, A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol, 2003. 37(3): p. 268-74.
13. Brown, G.D., et al., Dectin-1 Is A Major β-Glucan Receptor On Macrophages. The Journal of Experimental Medicine, 2002. 196(3): p. 407-412.
14. Ruiz-Herrera, J., et al., Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res, 2006. 6(1): p. 14-29.
15. Boxx, G.M., et al., Influence of mannan and glucan on complement activation and C3 binding by Candida albicans. Infect Immun, 2010. 78(3): p. 1250-9.
16. de Groot, P.W., et al., Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell, 2004. 3(4): p. 955-65.
17. Lee, K.K., et al., Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother, 2012. 56(1): p. 208-17.
18. Monge, R.A., et al., The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006. 152(Pt 4): p. 905-12.
19. Levin, D.E., Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2005. 69(2): p. 262-291.
20. Navarro-Garcia, F., et al., The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology, 2005. 151(Pt 8): p. 2737-49.
21. Navarro-Garcia, F., et al., Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol, 1995. 15(4): p. 2197-206.
22. LaFayette, S.L., et al., PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog, 2010. 6(8): p. e1001069.
23. Karkowska-Kuleta, J., M. Rapala-Kozik, and A. Kozik, Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol, 2009. 56(2): p. 211-24.
24. Yang, Y.L., Virulence factors of Candida species. J Microbiol Immunol Infect, 2003. 36(4): p. 223-8.
25. Busscher, H.J., et al., Biofilm formation on dental restorative and implant materials. J Dent Res, 2010. 89(7): p. 657-65.
26. Ramage, G., J.P. Martinez, and J.L. Lopez-Ribot, Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res, 2006. 6(7): p. 979-86.
27. Silva-Dias, A., et al., Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol, 2015. 6: p. 205.
28. Naglik, J.R., et al., Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol, 2006. 55(Pt 10): p. 1323-7.
29. Nobile, C.J., et al., Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog, 2006. 2(7): p. e63.
30. Nobile, C.J., et al., Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell, 2006. 5(10): p. 1604-10.
31. Nobile, C.J., et al., Complementary adhesin function in C. albicans biofilm formation. Curr Biol, 2008. 18(14): p. 1017-24.
32. Finkel, J.S. and A.P. Mitchell, Genetic control of Candida albicans biofilm development. Nat Rev Microbiol, 2011. 9(2): p. 109-18.
33. Blankenship, J.R. and A.P. Mitchell, How to build a biofilm: a fungal perspective. Curr Opin Microbiol, 2006. 9(6): p. 588-94.
34. Nett, J. and D. Andes, Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol, 2006. 9(4): p. 340-5.
35. Uppuluri, P., et al., Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog, 2010. 6(3): p. e1000828.
36. Nett, J., et al., Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother, 2007. 51(2): p. 510-20.
37. Ramage, G., et al., Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother, 2002. 49(6): p. 973-80.
38. Cheng, S.C., et al., Interplay between Candida albicans and the mammalian innate host defense. Infect Immun, 2012. 80(4): p. 1304-13.
39. Gow, N.A. and B. Hube, Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol, 2012. 15(4): p. 406-12.
40. Naglik, J., et al., Candida albicans proteinases and host/pathogen interactions. Cell Microbiol, 2004. 6(10): p. 915-26.
41. Schaller, M., et al., Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun, 2005. 73(5): p. 2758-65.
42. Chudzik, B., et al., A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions. Eur Biophys J, 2015. 44(1-2): p. 77-90.
43. Ji, H., et al., A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem, 2000. 43(13): p. 2493-505.
44. Georgopapadakou, N.H. and J.S. Tkacz, The fungal cell wall as a drug target. Trends Microbiol, 1995. 3(3): p. 98-104.
45. Xiang, M.J., et al., Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res, 2013. 13(4): p. 386-93.
46. Miyazaki, T., et al., Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance. Antimicrob Agents Chemother, 2006. 50(2): p. 580-6.
47. Balashov, S.V., S. Park, and D.S. Perlin, Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother, 2006. 50(6): p. 2058-63.
48. Franz, R., et al., Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother, 1998. 42(12): p. 3065-72.
49. Franz, R., M. Ruhnke, and J. Morschhauser, Molecular aspects of fluconazole resistance development in Candida albicans. Mycoses, 1999. 42(7-8): p. 453-8.
50. Cannon, R.D., et al., Candida albicans drug resistance another way to cope with stress. Microbiology, 2007. 153(Pt 10): p. 3211-7.
51. Aspuria, P.J. and F. Tamanoi, The Rheb family of GTP-binding proteins. Cell Signal, 2004. 16(10): p. 1105-12.
52. Heard, J.J., et al., Recent progress in the study of the Rheb family GTPases. Cell Signal, 2014. 26(9): p. 1950-7.
53. Loewith, R. and M.N. Hall, Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics, 2011. 189(4): p. 1177-201.
54. Tsao, C.C., Y.T. Chen, and C.Y. Lan, A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol, 2009. 46(2): p. 126-36.
55. Chen, Y.T., et al., Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. Eukaryot Cell, 2012. 11(2): p. 168-82.
56. Rueda, C., M. Cuenca-Estrella, and O. Zaragoza, Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence. Antimicrob Agents Chemother, 2014. 58(2): p. 1071-83.
57. Vasicek, E.M., et al., Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole. Antimicrob Agents Chemother, 2014. 58(11): p. 6807-18.
58. Sandini, S., et al., The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans. BMC Microbiol, 2011. 11: p. 106.
59. Rosenberg, M., H. Judes, and E. Weiss, Cell surface hydrophobicity of dental plaque microorganisms in situ. Infect Immun, 1983. 42(2): p. 831-4.
60. Francois, J.M., A simple method for quantitative determination of polysaccharides in fungal cell walls. Nat Protoc, 2006. 1(6): p. 2995-3000.
61. Tsai, P.W., et al., Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol, 2014. 52(7): p. 581-9.
62. Arthington-Skaggs, B.A., et al., Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol, 1999. 37(10): p. 3332-7.
63. Johnston, P.A. and A. Coddington, Drug resistance in the fission yeast Schizosaccharomyces pombe: pleiotropic mutations affecting the oleic acid and sterol composition of cell membranes. Curr Genet, 1984. 8(1): p. 37-43.
64. Reuss, O., et al., The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 2004. 341: p. 119-27.
65. Chen, H.F. and C.Y. Lan, Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One, 2015. 10(6): p. e0129903.
66. Hsu, P.C., et al., Diverse Hap43-independent functions of the Candida albicans CCAAT-binding complex. Eukaryot Cell, 2013. 12(6): p. 804-15.
67. Brunke, S., et al., One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. PLoS Pathog, 2014. 10(10): p. e1004478.
68. Ding, X., et al., The type II Ca2+/calmodulin-dependent protein kinases are involved in the regulation of cell wall integrity and oxidative stress response in Candida albicans. Biochem Biophys Res Commun, 2014. 446(4): p. 1073-8.
69. Heilmann, C.J., et al., Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell, 2013. 12(2): p. 254-64.
70. Blankenship, J.R., et al., An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog, 2010. 6(2): p. e1000752.
71. Yan, G., Y. Lai, and Y. Jiang, The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell, 2012. 45(6): p. 743-53.
72. Martin-Yken, H., et al., The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Molecular Microbiology, 2003. 49(1): p. 23-35.
73. Brown, A.J.P., et al., Stress adaptation in a pathogenic fungus. The Journal of Experimental Biology, 2014. 217(1): p. 144-155.
74. Stevens, D.A., M. Espiritu, and R. Parmar, Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother, 2004. 48(9): p. 3407-11.
75. Wiederhold, N.P., et al., Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother, 2005. 49(12): p. 5146-8.
76. Sheppard, D.C., et al., Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem, 2004. 279(29): p. 30480-9.
77. Tsai, P.W., et al., The role of Mss11 in Candida albicans biofilm formation. Mol Genet Genomics, 2014. 289(5): p. 807-19.
78. Kumamoto, C.A., A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(15): p. 5576-5581.
79. Urano, J., et al., The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem, 2000. 275(15): p. 11198-206.
80. Zonios, D.I. and J.E. Bennett, Update on azole antifungals. Semin Respir Crit Care Med, 2008. 29(2): p. 198-210.
81. Morschhauser, J., et al., The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog, 2007. 3(11): p. e164.
82. White, T.C., et al., Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother, 2002. 46(6): p. 1704-13.
83. Hiller, D., D. Sanglard, and J. Morschhauser, Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother, 2006. 50(4): p. 1365-71.
84. Kalkandelen, K.T. and M. Doluca Dereli, [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps]. Mikrobiyol Bul, 2015. 49(4): p. 609-18.
85. Bruno, V.M., et al., Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS Pathog, 2006. 2(3): p. e21.
86. Ren, B., et al., ABC transporters coupled with the elevated ergosterol contents contribute to the azole resistance and amphotericin B susceptibility. Appl Microbiol Biotechnol, 2014. 98(6): p. 2609-16.
87. Bastidas, R.J., J. Heitman, and M.E. Cardenas, The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog, 2009. 5(2): p. e1000294.
88. Delgado-Silva, Y., et al., Participation of Candida albicans transcription factor RLM1 in cell wall biogenesis and virulence. PLoS One, 2014. 9(1): p. e86270.
89. Buerger, C., B. DeVries, and V. Stambolic, Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun, 2006. 344(3): p. 869-80.
90. Hanker, A.B., et al., Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene, 2010. 29(3): p. 380-91.
91. Liao, W.L., A.M. Ramon, and W.A. Fonzi, GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet Biol, 2008. 45(4): p. 514-26.
92. Kraidlova, L., et al., The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. Eukaryot Cell, 2011. 10(9): p. 1219-29.
93. Martinez, P. and P.O. Ljungdahl, Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol, 2005. 25(21): p. 9435-46.
94. Bojsen, R., et al., A common mechanism involving the TORC1 pathway can lead to amphotericin B-persistence in biofilm and planktonic Saccharomyces cerevisiae populations. Sci Rep, 2016. 6: p. 21874.
95. Yu, H.Y., et al., Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother, 2011. 55(10): p. 4918-21.
96. Vonk, A.G., et al., Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy. Expert Opin Biol Ther, 2006. 6(9): p. 891-903.
97. Hiller, E., et al., Adaptation, adhesion and invasion during interaction of Candida albicans with the host--focus on the function of cell wall proteins. Int J Med Microbiol, 2011. 301(5): p. 384-9.
98. Ene, I.V., et al., Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. MBio, 2015. 6(4): p. e00986.
99. Torres, J., et al., Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem, 2002. 277(45): p. 43495-504.
100. Rinastiti, M., et al., Effect of biofilm on the repair bond strengths of composites. J Dent Res, 2010. 89(12): p. 1476-81.
101. Diezmann, S., M.D. Leach, and L.E. Cowen, Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States. PLoS One, 2015. 10(9): p. e0137947.
102. Polke, M., B. Hube, and I.D. Jacobsen, Candida survival strategies. Adv Appl Microbiol, 2015. 91: p. 139-235.
103. Cheng, S.C., et al., The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol, 2011. 90(2): p. 357-66.
104. Monod, M. and Z.M. Borg-von, Secreted aspartic proteases as virulence factors of Candida species. Biol Chem, 2002. 383(7-8): p. 1087-93.
105. Sorgo, A.G., et al., Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell, 2011. 10(8): p. 1071-81.
106. Marisco, G., et al., Low ergosterol content in yeast adh1 mutant enhances chitin maldistribution and sensitivity to paraquat-induced oxidative stress. Yeast, 2011. 28(5): p. 363-73.
107. Yu, Q., et al., Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chem Biol Interact, 2015. 227: p. 1-6.
108. Su, C., Y. Lu, and H. Liu, Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell, 2013. 24(3): p. 385-97.
109. Schmelzle, T. and M.N. Hall, TOR, a central controller of cell growth. Cell, 2000. 103(2): p. 253-62.
110. Hu, G., et al., TOR-dependent post-transcriptional regulation of autophagy. Autophagy, 2015. 11(12): p. 2390-2.
111. Robbins, N., et al., Metabolic control of antifungal drug resistance. Fungal Genet Biol, 2010. 47(2): p. 81-93.
112. Gao, L., et al., In Vitro Interactions between TOR Kinase Inhibitor and Antifungal Agents against Aspergillus spp. Antimicrob Agents Chemother, 2016.
113. Hong, W., H. Wen, and W. Liao, Fungal infection in organ transplant patients. Chin Med J (Engl), 2003. 116(9): p. 1421-5.
114. Singh, N. and J. Heitman, Antifungal attributes of immunosuppressive agents: new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients. Transplantation, 2004. 77(6): p. 795-800.
115. Dahlan, R., A. Patel, and S. Haider, Successful use of posaconazole to treat invasive cutaneous fungal infection in a liver transplant patient on sirolimus. The Canadian Journal of Infectious Diseases & Medical Microbiology, 2012. 23(2): p. e44-e47.
116. Laverdiere, M., et al., Therapeutic drug monitoring for triazoles: A needs assessment review and recommendations from a Canadian perspective. The Canadian Journal of Infectious Diseases & Medical Microbiology, 2014. 25(6): p. 327-343.
117. Sun, H.-Y., et al., Lipid Formulations of Amphotericin B Significantly Improve Outcome in Solid Organ Transplant Recipients with Central Nervous System Cryptococcosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2009. 49(11): p. 1721-1728.
118. Gillum, A.M., E.Y. Tsay, and D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet, 1984. 198(2): p. 179-82.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *