帳號:guest(3.147.27.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡君安
作者(外文):Chien, Chun An
論文名稱(中文):探究AICAR 和Metformin對粒線體動態平衡的影響
論文名稱(外文):Clarifying the effects of AICAR and Metformin on mitochondrial dynamics
指導教授(中文):張壯榮
指導教授(外文):Chang,Chuang Rung
口試委員(中文):王翊青
褚志斌
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080559
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:48
中文關鍵詞:粒線體動態平衡
外文關鍵詞:mitochondrial dynamicsAICARMetformin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
粒線體是一個高度動態平衡的胞器,經由不斷的分裂與融合可以幫助維持粒線體的型態與功能。在文獻中也可以看到參與粒線體動態平衡的蛋白會影響細胞凋亡。因此,粒線體的動態平衡與粒線體的功能和細胞的代謝反應息息相關。近期的研究發現,Metformin對許多癌症細胞皆有抑制其生長的效果,然而,AICAR也被報導過可以抑制癌細胞的生長並且影響其粒線體的功能。但是AICAR 和Metformin是否會影響粒線體的動態平衡及如何影響粒線體功能的機制尚待釐清,本篇論文將探討AICAR 和Metformin對於粒線體的動態平衡的影響。
我們的實驗結果發現,AICAR會透過融合與分裂的蛋白改變粒線體的型態。
此外,我們也觀察到AICAR和Metformin皆具有調控分裂與融合相關基因及蛋白的能力。最後,我們也發現AICAR會影響粒線體膜電位及粒線體氧化物質的生成。在我們的研究初步釐清AICAR 和Metformin在粒線體動態平衡的調控機制的影響,這些結果同時可以讓我們對於這兩種藥物的作用機制有更進一步的了解。
Mitochondria are highly dynamic organelles that play essential roles in energy supplying and cell metabolism. Dynamic fission and fusion are necessary for maintaining mitochondrial function and cell viability. Disrupted mitochondrial dynamics leads to mitochondria defect and disease. Metformin is the first-line drug for type 2 diabetes and reported to inhibit complex I in the mitochondrial respiratory chain. Previous study showed that both Metformin and 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) promote AMPK activity and mitochondrial activity. However, the mechanisms of how AICAR and Metformin affect mitochondria remain to be examined. In this project, we aim to clarify the underlying mechanisms of whether mitochondrial dynamics is affected by AICAR and Metformin. We found AICAR caused mitochondria hyperfusion but not Metformin. Also, we monitored mitochondrial dynamics related parameters such as promotor activities of fusion and fission genes, mitochondrial dynamics related proteins and activities. Finally, we found AICAR affected mitochondrial membrane potential and superoxide production. Elucidating the effects of AICAR and Metformin not only will help us to better understand the regulation of mitochondrial dynamics, but also potential mechanisms for therapeutic drugs for related diseases.
口試委員審定書………………………………………………………………………………………………………#
誌謝………………………………………………………………………………………………………….…………….. II
ABSTRACT………………………………………………………………………………………….………………….....II中文摘要…………………………………………………………………………………………………………………IV
LIST OF FIGURES……………………………………………………………………….……………………………….V
LIST OF TABLES………………………………………………………………………………….……………..………VI
CONTENTS…………………………………………………………………………………………..………….VII-IX
Chapter 1 Introduction
1.1 Overview of mitochondrial functions and structure…………………………………..1
1.2 Mitochondria are dynamic organelles………………………………………………..………1
1.3 Mitochondria fission and fusion machinery…………………………….…………………2
1.3.1 Mitochondrial dynamics in fission……………………………………….………......2
1.3.2 Mitochondrial dynamics in fusion……………………………………………………..3
1.4 Mitochondrial dynamics abnormality leads to disorders…………………………...4
1.4.1 Mitochondrial dynamics and neurodegenerative disease……….……..…4
1.4.2 Mitochondrial dynamics in cancer…………………………………..…….…………4
1.4.3 Mitochondrial dynamics in diabetes…………………………..…………………….5
1.5 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) acts as an AMP mimetic compound……………………………………………………………………….………….6
1.6 1,1-dimethylbiguanide hydrochloride (Metformin) is an AMPK activator compound…………………………………………………………………………..………….………..6
1.7 The specific aim of this study…………………………………………………………….…..…..7
Chapter 2 Materials and Methods
2.1 Cell culture and chemicals treatment ………………………………….…………….……..8
2.2 Cell viability assay ………………………………………….…….…………………………………..8
2.3 DNA extraction ………………………………………….….….………………………….…………..9
2.4 Plasmids construct ……………………………………………….……..……………………………9
2.5 Cell transfection……………………………………………….……………………..……….……….9
2.6 Luciferase assay……………………………………………….……………………………..………10
2.7 RNA extraction……………………………………………….………………………………….……10
2.8 Reverse transcription……………………………………………….…………………..…………11
2.9 Real-Time PCR…………………………………………………………………………………………11
2.10 Protein extraction……………………………………………….……………..……………………12
2.11 SDS-PAGE and western blot……………………………………….……………………………12
2.12 Immunofluorescence staining………………………………..…………….…………………13
2.13 Antibodies……………………………………………….……………………………………………..13
2.14 Measurement of mitochondrial membrane potential……………………………..13
2.15 Measurement of mitochondrial reactive oxygen species (ROS)……………….14
2.16 Measurement of mitochondrial superoxide (O2・-)…………………………………..14
2.17 Statistical analysis…………………………………….……………………………………………..15
Chapter 3 Results
3.1 High concentration of AICAR attenuated cell viability of human neuroblastoma cells but not Metformin ………………………………………….………16
3.2 AMP protein kinase (AMPK) were activated by AICAR and Metformin in SH-SY5Y cell………………………………………….………………………………………………………16
3.3 AICAR induced mitochondrial dynamics changes but not Metformin.……..17
3.4 AICAR and Metformin modulated mitochondrial fission and fusion machineries…………………………….………………………………………………………………18
3.4.1 AICAR and Metformin modulated mitochondrial fission and fusion protein content.……………………………………………….………………………………18
3.4.2 AICAR and Metformin treatment induced changes of mitochondrial fission and fusion gene expression..……………………………........……….……19
3.5 Examining the effects of AICAR and Metformin on mitochondrial activity by Flow cytometry…………………………………………………………………………………..…..19
3.5.1 Mitochondrial membrane potential in SH-SY5Y cells were affected by AICAR and Metformin……………………………….……………………………….…….20
3.5.2 AICAR increased cellular superoxide but not Metformin…………….…….20
3.5.3 Mitochondrial superoxide level was affected by AICAR but not Metformin………………………………………………………………………………….…….21
Chapter 4 Discussion and Conclusion
4.1 Cell viability on AICAR and Metformin…………………………………….……………….22
4.2 Mitochondrial morphology changes in different status. …………….…..……….23
4.3 AICAR and Metformin modulate mitochondrial fission and fusion machinery……………………………………………………………………………………………….23
4.4 Mitochondrial function in AICAR and Metformin…………………………………….24
References…………………………………………………………..………………………………………26-33
Alirol, E., and Martinou, J.C. (2006). Mitochondria and cancer: is there a morphological connection Oncogene 25, 4706-4716.
Andreux, P.A., Houtkooper, R.H., and Auwerx, J. (2013). Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12, 465-483.
Archer, S.L. (2013). Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251.
Arnold Y. Seo, A.-M.J., Debapriya Dutta, Judy C. Y. Hwang, John P. Aris and Christiaan Leeuwenburgh (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more.
Barbour, J.A., and Turner, N. (2014). Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014, 156020.
Bliek, R.J.Y.a.A.M.v.d. (2012). Mitochondrial Fission, Fusion and Stress.
Chan, D.C. (2006a). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
Chan, D.C. (2006b). Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79-99.
Chang, C.R., and Blackstone, C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282, 21583-21587.
Chang, C.R., and Blackstone, C. (2010). Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201, 34-39.
Chang, C.R., Manlandro, C.M., Arnoult, D., Stadler, J., Posey, A.E., Hill, R.B., and Blackstone, C. (2010). A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285, 32494-32503.
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18, R169-176.
Chen, H., Chomyn, A., and Chan, D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280, 26185-26192.
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200.
Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 101, 15927-15932.
Daisuke Kukidome, T.N., Kazuhiro Sonoda, Koujiro Imoto, Kazuo Fujisawa,Miyuki Yano, Hiroyuki Motoshima, Tetsuya Taguchi, Takeshi Matsumura, and Eiichi Araki (2005). Activation of AMP-Activated Protein Kinase Reduces Hyperglycemia-Induced Mitochondrial Reactive Oxygen Species Production and Promotes Mitochondrial Biogenesis in Human Umbilical Vein Endothelial Cells.
Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8, 870-879.
Diamanti-Kandarakis, E., Christakou, C.D., Kandaraki, E., and Economou, F.N. (2010). Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol 162, 193-212.
Ducommun, S., Ford, R.J., Bultot, L., Deak, M., Bertrand, L., Kemp, B.E., Steinberg, G.R., and Sakamoto, K. (2014). Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 306, E688-696.
Elgass, K., Pakay, J., Ryan, M.T., and Palmer, C.S. (2013). Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833, 150-161.
Erin Quan Toyama, S.H., Julien Courchet, Tommy L. Lewis Jr., Oliver C. Losón, Kristina Hellberg, Nathan P. Young, Hsiuchen Chen, Franck Polleux, David C. Chan, Reuben J. Shaw (2016). AMP-activated protein kinase mediates mitochondrial fission in response to energy stress.
Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189.
Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2008). Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18, 165-173.
Golubitzky, A., Dan, P., Weissman, S., Link, G., Wikstrom, J.D., and Saada, A. (2011). Screening for active small molecules in mitochondrial complex I deficient patient's fibroblasts, reveals AICAR as the most beneficial compound. PLoS One 6, e26883.
Gonzalez-Girones, D.M., Moncunill-Massaguer, C., Iglesias-Serret, D., Cosialls, A.M., Perez-Perarnau, A., Palmeri, C.M., Rubio-Patino, C., Villunger, A., Pons, G., and Gil, J. (2013). AICAR induces Bax/Bak-dependent apoptosis through upregulation of the BH3-only proteins Bim and Noxa in mouse embryonic fibroblasts. Apoptosis 18, 1008-1016.
Grandemange, S., Herzig, S., and Martinou, J.C. (2009). Mitochondrial dynamics and cancer. Semin Cancer Biol 19, 50-56.
Griparic, L., Kanazawa, T., and van der Bliek, A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178, 757-764.
Hardie, D.G., Ross, F.A., and Hawley, S.A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13, 251-262.
Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N., and Struhl, K. (2009). Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69, 7507-7511.
Hung, C.W., Chen, Y.C., Hsieh, W.L., Chiou, S.H., and Kao, C.L. (2010). Ageing and neurodegenerative diseases. Ageing Res Rev 9 Suppl 1, S36-46.
Jiang, S., Park, D.W., Stigler, W.S., Creighton, J., Ravi, S., Darley-Usmar, V., and Zmijewski, J.W. (2013). Mitochondria and AMP-activated protein kinase-dependent mechanism of efferocytosis. J Biol Chem 288, 26013-26026.
Jornayvaz, F.R., and Shulman, G.I. (2010). Regulation of mitochondrial biogenesis. Essays Biochem 47, 69-84.
Jose, C., Hebert-Chatelain, E., Bellance, N., Larendra, A., Su, M., Nouette-Gaulain, K., and Rossignol, R. (2011). AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta 1807, 707-718.
Joseph, A.M., Joanisse, D.R., Baillot, R.G., and Hood, D.A. (2012). Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res 2012, 642038.
Kai, Y., Kawano, Y., Yamamoto, H., and Narahara, H. (2015). A possible role for AMP-activated protein kinase activated by metformin and AICAR in human granulosa cells. Reprod Biol Endocrinol 13, 27.
Kim, Y., and Park, C.W. (2016). Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res Clin Pract 35, 69-77.
Koch, A., Yoon, Y., Bonekamp, N.A., McNiven, M.A., and Schrader, M. (2005). A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16, 5077-5086.
Kroemer, G. (2006). Mitochondria in cancer. Oncogene 25, 4630-4632.
Kuno, A., and Horio, Y. (2016). SIRT1: A Novel Target for the Treatment of Muscular Dystrophies. Oxid Med Cell Longev 2016, 6714686.
Lee, Y.J., Jeong, S.Y., Karbowski, M., Smith, C.L., and Youle, R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15, 5001-5011.
Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795.
Long, Y.C., and Zierath, J.R. (2006). AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116, 1776-1783.
Lowell, B.B., and Shulman, G.I. (2005). Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387.
M Kanabus, S.J.H.a.S.R. (2014). Development of pharmacological strategies for mitochondrial disorders. British Journal of Pharmacology 171.
Mark R. OWEN, E.D.a.A.P.H. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
Martin, K.H.a.W. (2003). Essence of mitochondria.
Maximo, V., Lima, J., Soares, P., and Sobrinho-Simoes, M. (2009). Mitochondria and cancer. Virchows Arch 454, 481-495.
McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Curr Biol 16, R551-560.
McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., and Fon, E.A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33, 282-295.
Meeks, Z. (2012). Mitochondria and Cancer.
Mihaylova, M.M., and Shaw, R.J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13, 1016-1023.
Mishra, P., and Chan, D.C. (2016). Metabolic regulation of mitochondrial dynamics. J Cell Biol 212, 379-387.
Morigi, M., Perico, L., Rota, C., Longaretti, L., Conti, S., Rottoli, D., Novelli, R., Remuzzi, G., and Benigni, A. (2015). Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J Clin Invest 125, 715-726.
Pauly, M., Daussin, F., Burelle, Y., Li, T., Godin, R., Fauconnier, J., Koechlin-Ramonatxo, C., Hugon, G., Lacampagne, A., Coisy-Quivy, M., et al. (2012). AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am J Pathol 181, 583-592.
Philp, A., Belew, M.Y., Evans, A., Pham, D., Sivia, I., Chen, A., Schenk, S., and Baar, K. (2011). The PGC-1alpha-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes. Am J Physiol Regul Integr Comp Physiol 301, R864-872.
Ren, J., Pulakat, L., Whaley-Connell, A., and Sowers, J.R. (2010). Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med (Berl) 88, 993-1001.
Romanello, V., Guadagnin, E., Gomes, L., Roder, I., Sandri, C., Petersen, Y., Milan, G., Masiero, E., Del Piccolo, P., Foretz, M., et al. (2010). Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29, 1774-1785.
Ryan JO Dowling, P.J.G.a.V.S. (2011). Understanding the benefit of metformin use in cancer treatment.
Santos, D., Esteves, A.R., Silva, D.F., Januario, C., and Cardoso, S.M. (2015). The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson's Disease. Mol Neurobiol 52, 573-586.
Sebastian, D., Hernandez-Alvarez, M.I., Segales, J., Sorianello, E., Munoz, J.P., Sala, D., Waget, A., Liesa, M., Paz, J.C., Gopalacharyulu, P., et al. (2012). Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109, 5523-5528.
Seo-Mayer, P.W., Thulin, G., Zhang, L., Alves, D.S., Ardito, T., Kashgarian, M., and Caplan, M.J. (2011). Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. Am J Physiol Renal Physiol 301, F1346-1357.
Sun, Y., Li, J., Xiao, N., Wang, M., Kou, J., Qi, L., Huang, F., Liu, B., and Liu, K. (2014). Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89, 19-28.
T.G. Frey a, C.W. Renken a,b, G.A. Perkins c (2002). Insight into mitochondrial structure and function from electron tomography.
Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282, 11521-11529.
Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L., Jr., Loson, O.C., Hellberg, K., Young, N.P., Chen, H., Polleux, F., Chan, D.C., et al. (2016). Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281.
Vallianou, N.G., Evangelopoulos, A., and Kazazis, C. (2013). Metformin and cancer. Rev Diabet Stud 10, 228-235.
van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5.
Wallace, D.C. (2012). Mitochondria and cancer. Nat Rev Cancer 12, 685-698.
Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884.
Wheaton, W.W., Weinberg, S.E., Hamanaka, R.B., Soberanes, S., Sullivan, L.B., Anso, E., Glasauer, A., Dufour, E., Mutlu, G.M., Budigner, G.S., et al. (2014). Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242.
Youle, M.K.a.R. (2003). Dynamics of mitochondrial morphology in healthy cells and during apoptosis.
Zhang, B.B., Zhou, G., and Li, C. (2009). AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9, 407-416.
Zhu, P.P., Patterson, A., Stadler, J., Seeburg, D.P., Sheng, M., and Blackstone, C. (2004). Intra-and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279, 35967-35974.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *