帳號:guest(3.138.137.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊明鎧
作者(外文):YANG,MING-KAI
論文名稱(中文):小鼠視網膜星狀無軸突細胞中 Gβ5 剔除對光感受區域與方向選擇性的影響不顯著
論文名稱(外文):Gβ5 is not essential for the receptive field and direction selectivity in mouse starburst amacrine cells
指導教授(中文):焦傳金
指導教授(外文):Chiao,Chuan-Chin
口試委員(中文):陳令儀
王致恬
口試委員(外文):Chen,Linyi
Wang,Chih-Tien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:103080556
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:44
中文關鍵詞:Gβ5 蛋白星狀無軸突細胞樹突範圍光感受區域方向選擇性時間頻率空間頻率
外文關鍵詞:Gβ5 subunitStarburst amacrine cellsDendritic fieldReceptive fieldDirection selectivityTemporal frequencySpatial frequency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:64
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在許多生理反應中都有G蛋白訊息調控的參與,在過去研究中發現一種Gβ5次單元蛋白會廣泛表現在視網膜外叢狀層、內叢狀層、節狀細胞層和膽鹼能細胞中。不同於以往常見的G蛋白複合物,Gβ5會與R7RGS蛋白家族結合,對下游GTP水解過程進行調控。若將此種Gβ5次單元從感光細胞及雙極細胞中剃除,將會影響細胞突觸發育的完整性和正常的光反應。根據美國貝勒醫學院陳景康教授於2015 ARVO年會的報告發現,如果專一性地剃除小鼠視網膜星狀無軸突細胞內Gβ5的基因表現,將會縮小星狀無軸突細胞的樹突範圍。而星狀無軸突細胞其本身具有對光刺激的方向選擇性,利用此特性得以在視網膜內處理動態視覺的訊息傳遞。在此篇研究中,我們想進一步探討這種Gβ5蛋白剔除對樹突形態上的缺陷是否會影響到星狀無軸突細胞本身的光反應及方向選擇性調控的能力。我們利用不同條件的光刺激去分析星狀無軸突細胞的光感受區域大小,以及對於光刺激的時間頻率和空間頻率調控能力的探討,最後我們利用遮蔽物針對不同樹突區域給予光刺激,以觀察哪一部分的樹突區域對於方向選擇性反應較為重要。從研究結果中我們發現專一性地剃除Gβ5次單元確實會縮小星狀無軸突細胞的樹突範圍,但此形態的缺陷並不會影響其光感受區域的大小。而關於時間頻率、空間頻率與遮蔽物的實驗結果,星狀無軸突細胞也沒有因為Gβ5次單元的剃除,而減弱對方向選擇性的反應,反而有輕微增強之趨勢。這樣的結果也與陳景康教授實驗室尚未發表的Gβ5次單元剃除不影響眼動反射行為實驗結果大致相符。因此,總結來說,本篇的實驗結果證實了專一性Gβ5次單元的剃除不會顯著地影響星狀無軸突細胞的正常光反應及方向選擇性。
Detecting a moving object and its direction is a critical task for animals. The starburst amacrine cells (SACs), an interneuron in the retina, play an important role in the processing of motion direction. Gβ5 and its obligate partners R7 regulators of G-protein signaling are necessary for normal outer retinal functions. It is known that the expression of Gβ5 is wide spread in the photoreceptor layer, outer plexiform layer, inner plexiform layer, cholinergic cellular strata, and ganglion cell layer. Although previous studies have shown that Gβ5 is essential for phototransduction and neural signal processing in photoreceptors and ON-bipolar cells, the function of Gβ5 in cholinergic SACs is unclear. However, a recent study showed that Gβ5 may be associated with SAC morphology development. Thus, this study was aimed to examine whether Gβ5 elimination in SACs would affect their receptive field size and direction selectivity. By conditional knockout Gβ5 in SACs, the light responses of SACs were characterized using patch clamp recording. Our results showed that conditional Gβ5 knockout would decrease the dendritic field size of SACs, but the Gβ5 absence would not affect the receptive field of SACs. Using expanding and contracting concentric sinusoidal waves as light stimuli, our findings also showed that eliminating Gβ5 in SACs did not dramatically change the temporal and spatial frequency dependences and the central mask effect. This is consistent with Dr. CK Chen unpublished data, in which the Gβ5 specific knockout within cholinergic SACs did not disturb the normal function of motion detection in the optokinetic response. Thus, our results suggest that conditional Gβ5 knockout in SACs only led to a morphological defect, but it did not influence the normal light response function and direction selectivity in SACs.
CONTENTS
摘要 i
ABSTRACT iii
CHAPTER 1. INTRODUCTION 1
1-1 Neural circuitry in the retina 1
1-2 Starburst amacrine cell 1
1-3 The role of Gβ5 in the retina 3
1-4 Goal and summary 5
CHAPTER 2. MATERIALS AND METHODS 7
2-1 Animals 7
2-2 Retina preparation 8
2-3 Electrophysiology 8
2-4 Light stimuli 9
2-5 Image acquisition 10
2-6 Image analysis 11
2-7 Data analysis 11
CHAPTER 3. RESULTS 13
3-1 Voltage response of SACs 13
3-2 cKO Gβ5-/- SACs have smaller dendritic field than the control group, but the receptive field of cKO Gβ5-/- SACs and the control group are similar 13
3-3 Gβ5 in SACs has a limited role in the temporal frequency dependence 14
3-4 Gβ5 in SACs does not involve in the spatial frequency dependence 15
3-5 Gβ5 in SACs has a slight influence in the central mask dependence 17
3-6 cKO Gβ5-/- SACs have normal reversal potential in the I-V plot and full width at half maximum in the temporal response 18
CHAPTER 4. DISCUSSION 19
4-1 Cell-autonomous dendritic field defect of SACs in conditional Gβ5 knockout mice 19
4-2 Responses of temporal and spatial frequency dependence of SACs does not show apparent defect in the conditional Gβ5 knockout mice 20
4-3 Specific cholinergic Gβ5 knockout would enlarge the DS preference at proximal and distal dendritic sections 22
4-4 Removing the Gβ5 subunit from SACs does not change the characteristics of membrane potential and temporal response 24
REFERENCES 25
FIGURES 28
References
Anderson, G.R., Posokhova, E., and Martemyanov, K.A. (2009). The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell biochemistry and biophysics 54, 33-46.
Barlow, H.B., Hill, R.M., and Levick, W.R. (1964). Retinal Ganglion Cells Responding Selectively to Direction + Speed of Image Motion in Rabbit. Journal of Physiology-London 173, 377-407.
Birnbaumer, L. (2007). Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. Biochimica et biophysica acta 1768, 772-793.
Bloomfield, S.A. (1992). Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. Journal of Neurophysiology 68, 711-725.
Borg-Graham, L.J. (2001). The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Neuroscience 4, 176-183.
Borg-Graham, L.J., and Grzywacz, N.M. (1992). A model of the directional selectivity circuit in retina: transformations by neurons singly and in concert. In Single Neuron Computation, M. Thomas, D. Joel, and F.Z. Steven, eds. (Academic Press Professional, Inc.), pp. 347-375.
Briggman, K.L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183-188.
Catterall, W.A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annual review of cell and developmental biology 16, 521-555.
Chen, C.-K.J., Bang, A., Chen, Y.-J., McQuiston, A.R., Tu, H.-Y., and Chiao, C.-C. (2015). Cell-autonomous changes in displaced cholinergic amacrine cells lacking Gβ5. Investigative ophthalmology & visual science 56, 3231.
Chen, C.K., Eversole-Cire, P., Zhang, H., Mancino, V., Chen, Y.J., He, W., Wensel, T.G., and Simon, M.I. (2003). Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proceedings of the National Academy of Sciences of the United States of America 100, 6604-6609.
Ding, H., Smith, R.G., Poleg-Polsky, A., Diamond, J.S., and Briggman, K.L. (2016). Species-specific wiring for direction selectivity in the mammalian retina. Nature 535, 105-110.
Dohlman, H.G., and Thorner, J. (1997). RGS proteins and signaling by heterotrimeric G proteins. Journal of Biological Chemistry 272, 3871-3874.
Dolphin, A.C. (1999). L-type calcium channel modulation. Advances in second messenger and phosphoprotein research 33, 153-177.
Dunlap, K., and Fischbach, G.D. (1981). Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. Journal of Physiology-London 317, 519-535.
Enciso, G., Rempe, M., Dmitriev, A.V., Gavrikov, K.E., Terman, D., and Mangel, S.C. (2010). A model of direction selectivity in the starburst amacrine cell network. Journal of Computational Neuroscience 28, 567-578.
Euler, T., Detwiler, P.B., and Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845-852.
Famiglietti, E.V., Jr. (1983). 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric on and off amacrine cells of rabbit retina. Brain Research 261, 138-144.
Farajian, R., Raven, M.A., Cusato, K., and Reese, B.E. (2004). Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Visual neuroscience 21, 13-22.
Fried, S.I., Munch, T.A., and Werblin, F.S. (2002). Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411-414.
Gavrikov, K.E., Dmitriev, A.V., Keyser, K.T., and Mangel, S.C. (2003). Cation--chloride cotransporters mediate neural computation in the retina. Proceedings of the National Academy of Sciences of the United States of America 100, 16047-16052.
Hausselt, S.E., Euler, T., Detwiler, P.B., and Denk, W. (2007). A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biology 5, e185.
Hooks, S.B., and Harden, T.K. (2004). Purification and In Vitro Functional Analysis of R7 Subfamily RGS Proteins in Complex with Gβ5. Methods in enzymology, P.S. David, ed. (Academic Press), pp. 163-177.
Ishii, M., and Kurachi, Y. (2003). Physiological actions of regulators of G-protein signaling (RGS) proteins. Life sciences 74, 163-171.
Keresztes, G., Martemyanov, K.A., Krispel, C.M., Mutai, H., Yoo, P.J., Maison, S.F., Burns, M.E., Arshavsky, V.Y., and Heller, S. (2004). Absence of the RGS9.Gbeta5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse. Journal of Biological Chemistry 279, 1581-1584.
Krispel, C.M., Chen, D., Melling, N., Chen, Y.J., Martemyanov, K.A., Quillinan, N., Arshavsky, V.Y., Wensel, T.G., Chen, C.K., and Burns, M.E. (2006). RGS expression rate-limits recovery of rod photoresponses. Neuron 51, 409-416.
Lee, S., and Zhou, Z.J. (2006). The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787-799.
Liang, J.J., Chen, H.H., Jones, P.G., and Khawaja, X.Z. (2000). RGS7 complex formation and colocalization with the Gbeta5 subunit in the adult rat brain and influence on Gbeta5gamma2-mediated PLCbeta signaling. Journal of Neuroscience Research 60, 58-64.
Masland, R.H. (2012). The neuronal organization of the retina. Neuron 76, 266-280.
Masland, R.H., and Mills, J.W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina. Journal of Cell Biology 83, 159-178.
Miller, R.F., and Bloomfield, S.A. (1983). Electroanatomy of a unique amacrine cell in the rabbit retina. Proceedings of the National Academy of Sciences of the United States of America 80, 3069-3073.
Nunoki, K., Florio, V., and Catterall, W.A. (1989). Activation of purified calcium channels by stoichiometric protein phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 86, 6816-6820.
Oesch, N.W., and Taylor, W.R. (2010). Tetrodotoxin-resistant sodium channels contribute to directional responses in starburst amacrine cells. PLoS One 5, e12447.
Rao, A., Dallman, R., Henderson, S., and Chen, C.K. (2007). G beta 5 is required for normal light responses and morphology of retinal ON-bipolar cells. Journal of Neuroscience 27, 14199-14204.
Stockton, R.A., and Slaughter, M.M. (1989). B-wave of the electroretinogram. A reflection of ON bipolar cell activity. Journal of General Physiology 93, 101-122.
Suryanarayanan, A., Liang, J., Meyer, E.M., Lindemeyer, A.K., Chandra, D., Homanics, G.E., Sieghart, W., Olsen, R.W., and Spigelman, I. (2011). Subunit Compensation and Plasticity of Synaptic GABA(A) Receptors Induced by Ethanol in alpha4 Subunit Knockout Mice. Frontiers in neuroscience 5, 110.
Taylor, W.R., and Smith, R.G. (2012). The role of starburst amacrine cells in visual signal processing. Visual neuroscience 29, 73-81.
Taylor, W.R., and Vaney, D.I. (2002). Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. Journal of Neuroscience 22, 7712-7720.
Taylor, W.R., and Wassle, H. (1995). Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. European Journal of Neuroscience 7, 2308-2321.
Tukker, J.J., Taylor, W.R., and Smith, R.G. (2004). Direction selectivity in a model of the starburst amacrine cell. Visual neuroscience 21, 611-625.
Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nature Reviews Neuroscience 13, 194-208.
Velte, T.J., and Miller, R.F. (1997). Spiking and nonspiking models of starburst amacrine cells in the rabbit retina. Visual neuroscience 14, 1073-1088.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *