|
1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D. M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 136, E359-386 2. Warnakulasuriya, S. (2009) Global epidemiology of oral and oropharyngeal cancer. Oral oncology 45, 309-316 3. Dionne, K. R., Warnakulasuriya, S., Zain, R. B., and Cheong, S. C. (2015) Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory. International journal of cancer 136, 503-515 4. Markopoulos, A. K. (2012) Current aspects on oral squamous cell carcinoma. Open Dent J 6, 126-130 5. Petti, S. (2009) Lifestyle risk factors for oral cancer. Oral oncology 45, 340-350 6. Ernani, V., and Saba, N. F. (2015) Oral Cavity Cancer: Risk Factors, Pathology, and Management. Oncology 89, 187-195 7. Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine 12, 895-904 8. Nguyen, D. X., and Massague, J. (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8, 341-352 9. Hunter, K. W., Crawford, N. P., and Alsarraj, J. (2008) Mechanisms of metastasis. Breast cancer research : BCR 10 Suppl 1, S2 10. Mimori, K., Kataoka, A., Yoshinaga, K., Ohta, M., Sagara, Y., Yoshikawa, Y., Ohno, S., Barnard, G. F., and Mori, M. (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22, 59-67 11. Deryugina, E. I., and Quigley, J. P. (2006) Matrix metalloproteinases and tumor metastasis. Cancer metastasis reviews 25, 9-34 12. Yoo, C. B., and Jones, P. A. (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5, 37-50 13. Mascolo, M., Siano, M., Ilardi, G., Russo, D., Merolla, F., De Rosa, G., and Staibano, S. (2012) Epigenetic disregulation in oral cancer. International journal of molecular sciences 13, 2331-2353 14. Gasche, J. A., and Goel, A. (2012) Epigenetic mechanisms in oral carcinogenesis. Future Oncol 8, 1407-1425 15. Jithesh, P. V., Risk, J. M., Schache, A. G., Dhanda, J., Lane, B., Liloglou, T., and Shaw, R. J. (2013) The epigenetic landscape of oral squamous cell carcinoma. British journal of cancer 108, 370-379 16. Volkel, P., and Angrand, P. O. (2007) The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1-20 17. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693-705 18. Lachner, M., and Jenuwein, T. (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14, 286-298 19. Tyan, S. W., Hsu, C. H., Peng, K. L., Chen, C. C., Kuo, W. H., Lee, E. Y., Shew, J. Y., Chang, K. J., Juan, L. J., and Lee, W. H. (2012) Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PloS one 7, e35128 20. Valk-Lingbeek, M. E., Bruggeman, S. W., and van Lohuizen, M. (2004) Stem cells and cancer; the polycomb connection. Cell 118, 409-418 21. Laugesen, A., and Helin, K. (2014) Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735-751 22. Han, Z., Xing, X., Hu, M., Zhang, Y., Liu, P., and Chai, J. (2007) Structural basis of EZH2 recognition by EED. Structure 15, 1306-1315 23. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. The EMBO journal 23, 4061-4071 24. Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B., and Zhang, Y. (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131-135 25. Li, T., Chen, H., Li, W., Cui, J., Wang, G., Hu, X., Hoffman, A. R., and Hu, J. (2014) Promoter histone H3K27 methylation in the control of IGF2 imprinting in human tumor cell lines. Human molecular genetics 23, 117-128 26. Pasini, D., Bracken, A. P., and Helin, K. (2004) Polycomb group proteins in cell cycle progression and cancer. Cell cycle 3, 396-400 27. Yoo, K. H., and Hennighausen, L. (2012) EZH2 methyltransferase and H3K27 methylation in breast cancer. International journal of biological sciences 8, 59-65 28. van Leenders, G. J., Dukers, D., Hessels, D., van den Kieboom, S. W., Hulsbergen, C. A., Witjes, J. A., Otte, A. P., Meijer, C. J., and Raaphorst, F. M. (2007) Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. European urology 52, 455-463 29. Margueron, R., and Reinberg, D. (2011) The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349 30. Qian, C., and Zhou, M. M. (2006) SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci 63, 2755-2763 31. Dillon, S. C., Zhang, X., Trievel, R. C., and Cheng, X. (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6, 227 32. Zhang, Y., and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & development 15, 2343-2360 33. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185-196 34. Cao, R., and Zhang, Y. (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molecular cell 15, 57-67 35. Kaneko, S., Li, G., Son, J., Xu, C. F., Margueron, R., Neubert, T. A., and Reinberg, D. (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes & development 24, 2615-2620 36. Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. The EMBO journal 22, 5323-5335 37. Lin, Y. W., Ren, L. L., Xiong, H., Du, W., Yu, Y. N., Sun, T. T., Weng, Y. R., Wang, Z. H., Wang, J. L., Wang, Y. C., Cui, Y., Sun, D. F., Han, Z. G., Shen, N., Zou, W., Xu, J., Chen, H. Y., Cao, W., Hong, J., and Fang, J. Y. (2013) Role of STAT3 and vitamin D receptor in EZH2-mediated invasion of human colorectal cancer. The Journal of pathology 230, 277-290 38. Alford, S. H., Toy, K., Merajver, S. D., and Kleer, C. G. (2012) Increased risk for distant metastasis in patients with familial early-stage breast cancer and high EZH2 expression. Breast cancer research and treatment 132, 429-437 39. Chang, C. J., Yang, J. Y., Xia, W., Chen, C. T., Xie, X., Chao, C. H., Woodward, W. A., Hsu, J. M., Hortobagyi, G. N., and Hung, M. C. (2011) EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer cell 19, 86-100 40. Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629 41. Sasaki, M., Ikeda, H., Itatsu, K., Yamaguchi, J., Sawada, S., Minato, H., Ohta, T., and Nakanuma, Y. (2008) The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Laboratory investigation; a journal of technical methods and pathology 88, 873-882 42. Kim, K. H., and Roberts, C. W. (2016) Targeting EZH2 in cancer. Nature medicine 22, 128-134 43. Ntziachristos, P., Tsirigos, A., Van Vlierberghe, P., Nedjic, J., Trimarchi, T., Flaherty, M. S., Ferres-Marco, D., da Ros, V., Tang, Z., Siegle, J., Asp, P., Hadler, M., Rigo, I., De Keersmaecker, K., Patel, J., Huynh, T., Utro, F., Poglio, S., Samon, J. B., Paietta, E., Racevskis, J., Rowe, J. M., Rabadan, R., Levine, R. L., Brown, S., Pflumio, F., Dominguez, M., Ferrando, A., and Aifantis, I. (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nature medicine 18, 298-301 44. Simon, C., Chagraoui, J., Krosl, J., Gendron, P., Wilhelm, B., Lemieux, S., Boucher, G., Chagnon, P., Drouin, S., Lambert, R., Rondeau, C., Bilodeau, A., Lavallee, S., Sauvageau, M., Hebert, J., and Sauvageau, G. (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes & development 26, 651-656 45. Darnell, J. E., Jr., Kerr, I. M., and Stark, G. R. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421 46. Yu, H., Pardoll, D., and Jove, R. (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809 47. Akira, S., Nishio, Y., Inoue, M., Wang, X. J., Wei, S., Matsusaka, T., Yoshida, K., Sudo, T., Naruto, M., and Kishimoto, T. (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63-71 48. Uddin, N., Kim, R. K., Yoo, K. C., Kim, Y. H., Cui, Y. H., Kim, I. G., Suh, Y., and Lee, S. J. (2015) Persistent activation of STAT3 by PIM2-driven positive feedback loop for epithelial-mesenchymal transition in breast cancer. Cancer science 106, 718-725 49. Lambert, A. W., Wong, C. K., Ozturk, S., Papageorgis, P., Raghunathan, R., Alekseyev, Y., Gower, A. C., Reinhard, B. M., Abdolmaleky, H. M., and Thiagalingam, S. (2016) Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells. Molecular cancer research : MCR 14, 103-113 50. Seo, J. H., Jeong, K. J., Oh, W. J., Sul, H. J., Sohn, J. S., Kim, Y. K., Cho do, Y., Kang, J. K., Park, C. G., and Lee, H. Y. (2010) Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer letters 288, 50-56 51. Hirano, T., Ishihara, K., and Hibi, M. (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548-2556 52. Yuan, Z. L., Guan, Y. J., Wang, L., Wei, W., Kane, A. B., and Chin, Y. E. (2004) Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells. Molecular and cellular biology 24, 9390-9400 53. Yamanaka, Y., Nakajima, K., Fukada, T., Hibi, M., and Hirano, T. (1996) Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for Stat3 activation. The EMBO journal 15, 1557-1565 54. Lin, W. W., and Karin, M. (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of clinical investigation 117, 1175-1183 55. Selitrennik, M., and Lev, S. (2015) PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop. Oncotarget 6, 22214-22226 56. Xie, T. X., Wei, D., Liu, M., Gao, A. C., Ali-Osman, F., Sawaya, R., and Huang, S. (2004) Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23, 3550-3560 57. Garcia, R., Yu, C. L., Hudnall, A., Catlett, R., Nelson, K. L., Smithgall, T., Fujita, D. J., Ethier, S. P., and Jove, R. (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 8, 1267-1276 58. Kusaba, T., Nakayama, T., Yamazumi, K., Yakata, Y., Yoshizaki, A., Inoue, K., Nagayasu, T., and Sekine, I. (2006) Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncology reports 15, 1445-1451 59. Tang, Y. J., Sun, Z. L., Wu, W. G., Xing, J., He, Y. F., Xin, D. M., and Han, P. (2015) Inhibitor of signal transducer and activator of transcription 3 (STAT3) suppresses ovarian cancer growth, migration and invasion and enhances the effect of cisplatin in vitro. Genetics and molecular research : GMR 14, 2450-2460 60. Azare, J., Leslie, K., Al-Ahmadie, H., Gerald, W., Weinreb, P. H., Violette, S. M., and Bromberg, J. (2007) Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin beta 6. Molecular and cellular biology 27, 4444-4453 61. Musteanu, M., Blaas, L., Mair, M., Schlederer, M., Bilban, M., Tauber, S., Esterbauer, H., Mueller, M., Casanova, E., Kenner, L., Poli, V., and Eferl, R. (2010) Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 138, 1003-1011 e1001-1005 62. Schneller, D., Machat, G., Sousek, A., Proell, V., van Zijl, F., Zulehner, G., Huber, H., Mair, M., Muellner, M. K., Nijman, S. M., Eferl, R., Moriggl, R., and Mikulits, W. (2011) p19(ARF) /p14(ARF) controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology 54, 164-172 63. Ettl, T., Stiegler, C., Zeitler, K., Agaimy, A., Zenk, J., Reichert, T. E., Gosau, M., Kuhnel, T., Brockhoff, G., and Schwarz, S. (2012) EGFR, HER2, survivin, and loss of pSTAT3 characterize high-grade malignancy in salivary gland cancer with impact on prognosis. Human pathology 43, 921-931 64. Pectasides, E., Egloff, A. M., Sasaki, C., Kountourakis, P., Burtness, B., Fountzilas, G., Dafni, U., Zaramboukas, T., Rampias, T., Rimm, D., Grandis, J., and Psyrri, A. (2010) Nuclear localization of signal transducer and activator of transcription 3 in head and neck squamous cell carcinoma is associated with a better prognosis. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 2427-2434 65. Waugh, D. J., and Wilson, C. (2008) The interleukin-8 pathway in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 6735-6741 66. Benoy, I. H., Salgado, R., Van Dam, P., Geboers, K., Van Marck, E., Scharpe, S., Vermeulen, P. B., and Dirix, L. Y. (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 7157-7162 67. Lehrer, S., Diamond, E. J., Mamkine, B., Stone, N. N., and Stock, R. G. (2004) Serum interleukin-8 is elevated in men with prostate cancer and bone metastases. Technology in cancer research & treatment 3, 411 68. Wigmore, S. J., Fearon, K. C., Sangster, K., Maingay, J. P., Garden, O. J., and Ross, J. A. (2002) Cytokine regulation of constitutive production of interleukin-8 and -6 by human pancreatic cancer cell lines and serum cytokine concentrations in patients with pancreatic cancer. International journal of oncology 21, 881-886 69. Brew, R., Erikson, J. S., West, D. C., Kinsella, A. R., Slavin, J., and Christmas, S. E. (2000) Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine 12, 78-85 70. Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., Oshima, T., Ogasawara, N., Togawa, S., Wada, T., Kubota, H., Mori, Y., Ohara, H., Nomura, T., Higashiyama, S., and Itoh, M. (2005) IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine 29, 275-282 71. Hu, M., and Polyak, K. (2008) Microenvironmental regulation of cancer development. Current opinion in genetics & development 18, 27-34 72. Tan Ide, A., Ricciardelli, C., and Russell, D. L. (2013) The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. International journal of cancer 133, 2263-2276 73. Porter, S., Clark, I. M., Kevorkian, L., and Edwards, D. R. (2005) The ADAMTS metalloproteinases. The Biochemical journal 386, 15-27 74. Shindo, T., Kurihara, H., Kuno, K., Yokoyama, H., Wada, T., Kurihara, Y., Imai, T., Wang, Y., Ogata, M., Nishimatsu, H., Moriyama, N., Oh-hashi, Y., Morita, H., Ishikawa, T., Nagai, R., Yazaki, Y., and Matsushima, K. (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. The Journal of clinical investigation 105, 1345-1352 75. Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F., and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. The Journal of biological chemistry 272, 556-562 76. Brown, H. M., Dunning, K. R., Robker, R. L., Pritchard, M., and Russell, D. L. (2006) Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Developmental biology 300, 699-709 77. Iruela-Arispe, M. L., Carpizo, D., and Luque, A. (2003) ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Annals of the New York Academy of Sciences 995, 183-190 78. Kuno, K., Okada, Y., Kawashima, H., Nakamura, H., Miyasaka, M., Ohno, H., and Matsushima, K. (2000) ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS letters 478, 241-245 79. Lind, T., Birch, M. A., and McKie, N. (2006) Purification of an insect derived recombinant human ADAMTS-1 reveals novel gelatin (type I collagen) degrading activities. Molecular and cellular biochemistry 281, 95-102 80. Rodriguez-Manzaneque, J. C., Carpizo, D., Plaza-Calonge Mdel, C., Torres-Collado, A. X., Thai, S. N., Simons, M., Horowitz, A., and Iruela-Arispe, M. L. (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. The international journal of biochemistry & cell biology 41, 800-810 81. Egeblad, M., and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-174 82. Van Lint, P., and Libert, C. (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375-1381 83. Ye, S., Eriksson, P., Hamsten, A., Kurkinen, M., Humphries, S. E., and Henney, A. M. (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. The Journal of biological chemistry 271, 13055-13060 84. Eguchi, T., Kubota, S., Kawata, K., Mukudai, Y., Uehara, J., Ohgawara, T., Ibaragi, S., Sasaki, A., Kuboki, T., and Takigawa, M. (2008) Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Molecular and cellular biology 28, 2391-2413 85. Sun, N., Zhang, Q., Xu, C., Zhao, Q., Ma, Y., Lu, X., Wang, L., and Li, W. (2014) Molecular regulation of ovarian cancer cell invasion. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35, 11359-11366 86. Li, X., and Tai, H. H. (2012) Increased expression of matrix metalloproteinases mediates thromboxane A2-induced invasion in lung cancer cells. Curr Cancer Drug Targets 12, 703-715 87. Kmiecik, A. M., Pula, B., Suchanski, J., Olbromski, M., Gomulkiewicz, A., Owczarek, T., Kruczak, A., Ambicka, A., Rys, J., Ugorski, M., Podhorska-Okolow, M., and Dziegiel, P. (2015) Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression. PloS one 10, e0124865 88. Li, N., Dhar, S. S., Chen, T. Y., Kan, P. Y., Wei, Y., Kim, J. H., Chan, C. H., Lin, H. K., Hung, M. C., and Lee, M. G. (2016) JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis. Cancer research 76, 831-843 89. Zhang, M., Dai, C., Zhu, H., Chen, S., Wu, Y., Li, Q., Zeng, X., Wang, W., Zuo, J., Zhou, M., Xia, Z., Ji, G., Saiyin, H., Qin, L., and Yu, L. (2011) Cyclophilin A promotes human hepatocellular carcinoma cell metastasis via regulation of MMP3 and MMP9. Molecular and cellular biochemistry 357, 387-395 90. Ramos, D. M., But, M., Regezi, J., Schmidt, B. L., Atakilit, A., Dang, D., Ellis, D., Jordan, R., and Li, X. (2002) Expression of integrin beta 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 21, 297-307 91. Kurahara, S., Shinohara, M., Ikebe, T., Nakamura, S., Beppu, M., Hiraki, A., Takeuchi, H., and Shirasuna, K. (1999) Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: correlations with tumor invasion and metastasis. Head Neck 21, 627-638 92. Birchmeier, C., Sharma, S., and Wigler, M. (1987) Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proceedings of the National Academy of Sciences of the United States of America 84, 9270-9274 93. Bergethon, K., Shaw, A. T., Ou, S. H., Katayama, R., Lovly, C. M., McDonald, N. T., Massion, P. P., Siwak-Tapp, C., Gonzalez, A., Fang, R., Mark, E. J., Batten, J. M., Chen, H., Wilner, K. D., Kwak, E. L., Clark, J. W., Carbone, D. P., Ji, H., Engelman, J. A., Mino-Kenudson, M., Pao, W., and Iafrate, A. J. (2012) ROS1 rearrangements define a unique molecular class of lung cancers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30, 863-870 94. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T. L., Polakiewicz, R. D., Rush, J., and Comb, M. J. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190-1203 95. Birch, A. H., Arcand, S. L., Oros, K. K., Rahimi, K., Watters, A. K., Provencher, D., Greenwood, C. M., Mes-Masson, A. M., and Tonin, P. N. (2011) Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PloS one 6, e28250 96. Lee, J., Lee, S. E., Kang, S. Y., Do, I. G., Lee, S., Ha, S. Y., Cho, J., Kang, W. K., Jang, J., Ou, S. H., and Kim, K. M. (2013) Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 119, 1627-1635 97. Jun, H. J., Johnson, H., Bronson, R. T., de Feraudy, S., White, F., and Charest, A. (2012) The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer research 72, 3764-3774 98. Haghnegahdar, H., Du, J., Wang, D., Strieter, R. M., Burdick, M. D., Nanney, L. B., Cardwell, N., Luan, J., Shattuck-Brandt, R., and Richmond, A. (2000) The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol 67, 53-62 99. Owen, J. D., Strieter, R., Burdick, M., Haghnegahdar, H., Nanney, L., Shattuck-Brandt, R., and Richmond, A. (1997) Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. International journal of cancer 73, 94-103 100. Kuo, P. L., Shen, K. H., Hung, S. H., and Hsu, Y. L. (2012) CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis 33, 2477-2487 101. Kawanishi, H., Matsui, Y., Ito, M., Watanabe, J., Takahashi, T., Nishizawa, K., Nishiyama, H., Kamoto, T., Mikami, Y., Tanaka, Y., Jung, G., Akiyama, H., Nobumasa, H., Guilford, P., Reeve, A., Okuno, Y., Tsujimoto, G., Nakamura, E., and Ogawa, O. (2008) Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 2579-2587 102. Cheng, W. L., Wang, C. S., Huang, Y. H., Tsai, M. M., Liang, Y., and Lin, K. H. (2011) Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 22, 2267-2276 103. Zhang, J., Tu, K., Yang, W., Li, C., Yao, Y., Zheng, X., and Liu, Q. (2014) Evaluation of Jagged2 and Gli1 expression and their correlation with prognosis in human hepatocellular carcinoma. Molecular medicine reports 10, 749-754 104. Rossi, M., Magnoni, L., Miracco, C., Mori, E., Tosi, P., Pirtoli, L., Tini, P., Oliveri, G., Cosci, E., and Bakker, A. (2011) beta-catenin and Gli1 are prognostic markers in glioblastoma. Cancer biology & therapy 11, 753-761 105. Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S., and Katano, M. (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer research 64, 6071-6074 106. Chen, J. S., Huang, X. H., Wang, Q., Huang, J. Q., Zhang, L. J., Chen, X. L., Lei, J., and Cheng, Z. X. (2013) Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis 34, 10-19 107. Leovic, D., Sabol, M., Ozretic, P., Musani, V., Car, D., Marjanovic, K., Zubcic, V., Sabol, I., Sikora, M., Grce, M., Glavas-Obrovac, L., and Levanat, S. (2012) Hh-Gli signaling pathway activity in oral and oropharyngeal squamous cell carcinoma. Head Neck 34, 104-112 108. Wang, Y. F., Chang, C. J., Lin, C. P., Chang, S. Y., Chu, P. Y., Tai, S. K., Li, W. Y., Chao, K. S., and Chen, Y. J. (2012) Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head Neck 34, 1556-1561 109. Lin, S. C., Liu, C. J., Chiu, C. P., Chang, S. M., Lu, S. Y., and Chen, Y. J. (2004) Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J Oral Pathol Med 33, 79-86 110. Lee, T. I., Johnstone, S. E., and Young, R. A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1, 729-748 111. O'Donnell, R. K., Kupferman, M., Wei, S. J., Singhal, S., Weber, R., O'Malley, B., Cheng, Y., Putt, M., Feldman, M., Ziober, B., and Muschel, R. J. (2005) Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 24, 1244-1251 112. Song, H., Wang, R., Wang, S., and Lin, J. (2005) A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 102, 4700-4705 113. Li, Z., Wang, Y., Qiu, J., Li, Q., Yuan, C., Zhang, W., Wang, D., Ye, J., Jiang, H., Yang, J., and Cheng, J. (2013) The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget 4, 2532-2549 114. Leslie, K., Lang, C., Devgan, G., Azare, J., Berishaj, M., Gerald, W., Kim, Y. B., Paz, K., Darnell, J. E., Albanese, C., Sakamaki, T., Pestell, R., and Bromberg, J. (2006) Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer research 66, 2544-2552 115. Wang, Z., Zhu, S., Shen, M., Liu, J., Wang, M., Li, C., Wang, Y., Deng, A., and Mei, Q. (2013) STAT3 is involved in esophageal carcinogenesis through regulation of Oct-1. Carcinogenesis 34, 678-688 116. Niu, G., Wright, K. L., Ma, Y., Wright, G. M., Huang, M., Irby, R., Briggs, J., Karras, J., Cress, W. D., Pardoll, D., Jove, R., Chen, J., and Yu, H. (2005) Role of Stat3 in regulating p53 expression and function. Molecular and cellular biology 25, 7432-7440 117. Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., Mehra, R., Laxman, B., Cao, X., Yu, J., Kleer, C. G., Varambally, S., and Chinnaiyan, A. M. (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274-7284 118. Guo, J., Cai, J., Yu, L., Tang, H., Chen, C., and Wang, Z. (2011) EZH2 regulates expression of p57 and contributes to progression of ovarian cancer in vitro and in vivo. Cancer science 102, 530-539 119. Yu, J., Cao, Q., Yu, J., Wu, L., Dallol, A., Li, J., Chen, G., Grasso, C., Cao, X., Lonigro, R. J., Varambally, S., Mehra, R., Palanisamy, N., Wu, J. Y., Latif, F., and Chinnaiyan, A. M. (2010) The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29, 5370-5380 120. Shuai, K., and Liu, B. (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3, 900-911 121. Carow, B., and Rottenberg, M. E. (2014) SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol 5, 58 122. Matsumura, Y., Kobayashi, T., Ichiyama, K., Yoshida, R., Hashimoto, M., Takimoto, T., Tanaka, K., Chinen, T., Shichita, T., Wyss-Coray, T., Sato, K., and Yoshimura, A. (2007) Selective expansion of foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. Journal of immunology 179, 2170-2179 123. Shen, X., Hong, F., Nguyen, V. A., and Gao, B. (2000) IL-10 attenuates IFN-alpha-activated STAT1 in the liver: involvement of SOCS2 and SOCS3. FEBS letters 480, 132-136 124. Schmitz, J., Weissenbach, M., Haan, S., Heinrich, P. C., and Schaper, F. (2000) SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. The Journal of biological chemistry 275, 12848-12856 125. Sasaki, A., Yasukawa, H., Suzuki, A., Kamizono, S., Syoda, T., Kinjyo, I., Sasaki, M., Johnston, J. A., and Yoshimura, A. (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4, 339-351 126. Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T., Ohtsuka, S., Imaizumi, T., Matsuda, T., Ihle, J. N., and Yoshimura, A. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. The EMBO journal 18, 1309-1320 127. Liu, B., Liao, J., Rao, X., Kushner, S. A., Chung, C. D., Chang, D. D., and Shuai, K. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proceedings of the National Academy of Sciences of the United States of America 95, 10626-10631 128. Shuai, K., and Liu, B. (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5, 593-605 129. Zhang, J., Somani, A. K., and Siminovitch, K. A. (2000) Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 12, 361-378 130. Wu, C., Sun, M., Liu, L., and Zhou, G. W. (2003) The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306, 1-12 131. Chim, C. S., Fung, T. K., Cheung, W. C., Liang, R., and Kwong, Y. L. (2004) SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103, 4630-4635 132. Yuan, A., Chen, J. J., Yao, P. L., and Yang, P. C. (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10, 853-865 133. Mao, Y., Keller, E. T., Garfield, D. H., Shen, K., and Wang, J. (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer metastasis reviews 32, 303-315 134. Palena, C., Hamilton, D. H., and Fernando, R. I. (2012) Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol 8, 713-722
|