|
1. Frangogiannis, N.G., The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol, 2014. 11(5): p. 255-65. 2. Pfeffer, M.A. and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 1990. 81(4): p. 1161-1172. 3. Ptaszek, L.M., et al., Towards regenerative therapy for cardiac disease. The Lancet, 2012. 379(9819): p. 933-942. 4. Kuraitis, D., M. Ruel, and E.J. Suuronen, Mesenchymal stem cells for cardiovascular regeneration. Cardiovascular drugs and therapy, 2011. 25(4): p. 349-362. 5. Segner, H., Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009. 149(2): p. 187-195. 6. Kelly, A. and A.F. Hurlstone, The use of RNAi technologies for gene knockdown in zebrafish. Brief Funct Genomics, 2011. 10(4): p. 189-96. 7. Robu, M.E., et al., p53 activation by knockdown technologies. PLoS Genet, 2007. 3(5): p. e78. 8. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics, 2007. 8(5): p. 353-367. 9. Godwin, J., The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays, 2014. 36(9): p. 861-71. 10. Chablais, F., et al., The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol, 2011. 11: p. 21. 11. Jaźwińska, A. and P. Sallin, Regeneration versus scarring in vertebrate appendages and heart. The Journal of pathology, 2016. 238(2): p. 233-246. 12. McGrath, P. and C.-Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug discovery today, 2008. 13(9): p. 394-401. 13. Kikuchi, K., et al., Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 2010. 464(7288): p. 601-605. 14. Kikuchi, K., et al., tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development, 2011. 138(14): p. 2895-2902. 15. Jopling, C., et al., Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 2010. 464(7288): p. 606-609. 16. Chablais, F. and A. Jaźwińska, The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development, 2012. 139(11): p. 1921-1930. 17. Han, P., et al., Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res, 2014. 24(9): p. 1091-107. 18. Cleutjens, J.P., et al., The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res, 1999. 44(2): p. 232-41. 19. Bujak, M. and N.G. Frangogiannis, The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovascular research, 2007. 74(2): p. 184-195. 20. Desmoulière, A., et al., Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of cell biology, 1993. 122(1): p. 103-111. 21. Godwin, J., D. Kuraitis, and N. Rosenthal, Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol, 2014. 56: p. 47-55. 22. Schiller, M., D. Javelaud, and A. Mauviel, TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92. 23. Manon-Jensen, T., Y. Itoh, and J.R. Couchman, Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J, 2010. 277(19): p. 3876-89. 24. Couchman, J.R., Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol, 2010. 26: p. 89-114. 25. Herum, K.M., et al., Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress. J Mol Cell Cardiol, 2013. 54: p. 73-81. 26. Echtermeyer, F., et al., Syndecan-4 signalling inhibits apoptosis and controls NFAT activity during myocardial damage and remodelling. Cardiovascular research, 2011. 92(1): p. 123-131. 27. Li, J., et al., Macrophage-dependent regulation of syndecan gene expression. Circulation research, 1997. 81(5): p. 785-796. 28. Echtermeyer, F., et al., Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. The Journal of clinical investigation, 2001. 107(2): p. R9-R14. 29. Matsui, Y., et al., Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circulation research, 2011. 108(11): p. 1328-1339. 30. Takahashi, R., et al., Serum syndecan-4 is a novel biomarker for patients with chronic heart failure. J Cardiol, 2011. 57(3): p. 325-32. 31. Rosen, J.N., M.F. Sweeney, and J.D. Mably, Microinjection of zebrafish embryos to analyze gene function. J Vis Exp, 2009(25). 32. Huang, W.C., et al., Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish, 2010. 7(3): p. 297-304. 33. Pugach, E.K., et al., Retro-orbital injection in adult zebrafish. J Vis Exp, 2009(34). 34. Chen, J., et al., Superparamagnetic iron oxide nanoparticles mediated (131)I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer, 2014. 14: p. 114. 35. Poss, K.D., L.G. Wilson, and M.T. Keating, Heart regeneration in zebrafish. Science, 2002. 298(5601): p. 2188-90. 36. Lien, C.L., et al., Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen, 2012. 20(5): p. 638-46. 37. Gonzalez-Rosa, J.M. and N. Mercader, Cryoinjury as a myocardial infarction model for the study of cardiac regeneration in the zebrafish. Nat Protoc, 2012. 7(4): p. 782-8. 38. Chablais, F. and A. Jaźwińska, Induction of myocardial infarction in adult zebrafish using cryoinjury. Journal of visualized experiments: JoVE, 2012(62). 39. Gonzalez-Rosa, J.M., et al., Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development, 2011. 138(9): p. 1663-74. 40. Xie, J., et al., Syndecan-4 over-expression preserves cardiac function in a rat model of myocardial infarction. J Mol Cell Cardiol, 2012. 53(2): p. 250-8. 41. Wu, H., et al., Syndecan-4 shedding is involved in the oxidative stress and inflammatory responses in left atrial tissue with valvular atrial fibrillation. Int J Clin Exp Pathol, 2015. 8(6): p. 6387-96. 42. Scarpellini, A., et al., Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J Am Soc Nephrol, 2014. 25(5): p. 1013-27. 43. Giannandrea, M. and W.C. Parks, Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech, 2014. 7(2): p. 193-203. 44. Matsumoto, Y., I.-K. Park, and K. Kohyama, Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. The Journal of Immunology, 2009. 183(7): p. 4773-4781. 45. Liu, P., M. Sun, and S. Sader, Matrix metalloproteinases in cardiovascular disease. Canadian Journal of Cardiology, 2006. 22: p. 25B-30B. 46. Amarzguioui, M., et al., Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res, 2003. 31(2): p. 589-95. 47. Vuong, T.T., et al., Syndecan-4 is a major syndecan in primary human endothelial cells in vitro, modulated by inflammatory stimuli and involved in wound healing. J Histochem Cytochem, 2015. 63(4): p. 280-92. 48. Alberts, B., et al., The extracellular matrix of animals. 2002. 49. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harbor perspectives in biology, 2011. 3(7): p. a004952. 50. Poon, K.L. and T. Brand, The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Global cardiology science & practice, 2012. 2013(1): p. 9-28. 51. Lin, C.Y., C.Y. Chiang, and H.J. Tsai, Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci, 2016. 23: p. 19. 52. Eisen, J.S. and J.C. Smith, Controlling morpholino experiments: don't stop making antisense. Development, 2008. 135(10): p. 1735-43. 53. LeBert, D.C., et al., Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development, 2015. 54. Sedmera, D. and T. Wang, Ontogeny and phylogeny of the vertebrate heart. 2012: Springer Science & Business Media. 55. Marín-Juez, R., et al., Fast revascularization of the injured area is essential to support zebrafish heart regeneration. Proceedings of the National Academy of Sciences, 2016: p. 201605431. 56. Hu, N., H.J. Yost, and E.B. Clark, Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec, 2001. 264(1): p. 1-12. 57. Seifert, A.W., et al., Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 2012. 489(7417): p. 561-5.
|