帳號:guest(3.141.27.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林亞辰
作者(外文):Lin, Ya Chen
論文名稱(中文):探討ECM於粒線體自噬作用與神經退化中所扮演的角色
論文名稱(外文):Role of ECM in mitophagy in muscle and neurodegeneration.
指導教授(中文):陳俊宏
汪宏達
指導教授(外文):Chen, Chun Hong
Wang, Horng Dar
口試委員(中文):傅在峰
吳嘉霖
口試委員(外文):Fu, Tsai Feng
Wu, Chia Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080541
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:67
中文關鍵詞:粒線體自噬神經退化
外文關鍵詞:mitophagyneurodegeneration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
ECM (Enlargement and clustering mitochondria)是個具有鐵硫簇結合結構(CDGSH iron-sulfur domain)的蛋白,且具有高度的演化保留性。於小鼠實驗中發現缺乏ECM蛋白會導致粒線體失能和細胞死亡。而後我們比對了ECM之基因序列發現於果蠅中的同源基因。首先,透過果蠅細胞、果蠅的肌肉組織、幼蟲之唾腺細胞之免疫染色結果發現ECM坐落於粒線體上。先前研究結果中得知,在果蠅肌肉組織中過量表現ECM會造成粒線體膨大且聚集之現象,顯示出粒線體的恆定性出現問題,而粒線體的恆定可透過粒線體的自噬作用來調控。因此我們首先探討ECM與粒線體自噬之關聯性。其中,蛋白激酶磷酸化蛋白(PINK1)和泛素連結酶(Parkin)在粒線體自噬的機制中扮演著重要的角色,便藉由探討ECM與Parkin 和PINK1之關係,再進一步探討ECM是否會影響mitophagy的進行。PINK1或Parkin突變會導致ECM蛋白量累積,且ECM過量表現也可造成Parkin及PINK1的mRNA表現量下降。當ECM過量表現時會導致粒線體膨大且聚集、肌肉組織退化、壽命減短、爬行能力降低等,而此些現象也皆能夠藉由同時表現Parkin而恢復,由以上結果可顯示出ECM可能藉由調控Parkin和PINK1來影響mitophagy的進行,進而產生粒線體膨大卻無法代謝之現象。而進一步探討粒線體自噬各步驟之指標,當ECM過量表達會使泛素化(ubitquitination, FK2)和自噬體銜接蛋白(autophagic adaptor, Ref(2)p)以及自噬體蛋白(autophagosome marker, LC3)積聚在肌肉組織中,由此實驗結果指出ECM過量表達會抑制粒線體自噬過程中自噬體與溶酶體的融合,導致粒線體失常卻沒有被清除,粒線體因此而膨大且堆積於肌肉組織中。Parkin和PINK1突變是造成隱性的帕金森氏症(Parkinson's disease,PD)之致病原因之一,其病理特徵包含神經及肌肉之退化。而於果蠅之多巴胺神經中過量表現ECM會造成細胞數下降且粒線體膨大之現象;藉由網膜電氣生理試驗測試於成蟲眼睛中過量表現ECM之果蠅,其接收光刺激與光適應力皆降低;而將ECM過量表現於果蠅之蕈狀體中,會引起神經元退化且進一步降低果蠅學習及記憶之能力。由上述結果表明,ECM可能與神經退化有關。總結,我們於果蠅的肌肉與神經組織中,發現ECM可能是透過影響Parkin和PINK1所調控之粒線體自噬機制來造成粒線體之形態上的改變。而由實驗結果所指出由ECM造成的神經退化會隨著老化而趨於嚴重,可能與PINK1、Parkin 的mRNA會隨著年老而下降有關。而接下來我們將進一步探討ECM於粒線體自噬機制中所扮演之角色及機制。
The Enlargement and Clustering Mitochondria (ECM) gene is evolutionarily conserved, and encodes an iron-sulfur domain-containing protein. Previously, we identified a single ortholog of ECM in Drosophila based on genomic sequence alignment. In Drosophila, we found that ECM localizes to the mitochondria in the Drosophila S2 cell line and in the muscle of adult flies and salivary gland cells of larvae. The PTEN-induced putative protein kinase 1 (PINK1) and E3 ubiquitin ligase (Parkin) genes play central roles in the clearance of damaged or dysfunctional mitochondria in mitophagy, and mutations in Parkin and PINK1 are associated with an autosomal recessive form of parkinsonism, which suggests that these genes are involved in muscle and neuron degeneration. We investigated whether ECM is involved in Parkin/PINK1-mediated mitochondrial processes in Drosophila. The Parkin or PINK1 mutants resulted in an increase in the level of ECM protein and mRNA. On the other hand, Parkin and PINK1 mRNA level were reduced by ECM overexpression. The overexpression of ECM caused mitochondrial enlargement and revealed distinct vacuoles within the muscle mass that was rescued by coexpression of wild-type Parkin. When ECM overexpression were caused the ubiquitylation and autophagosome adaptor proteins and autophagosome marker were accumulated in muscle. These results suggested that the overexpression of ECM inhibited mitophagy. The overexpression of ECM in eyes of adult flies caused early neurodegeneration, as determined by electroretinogram assay. The overexpression of ECM in the mushroom body caused neuron degeneration, and diminished learning and memory performance. These results suggest that ECM may be involved in neurodegeneration. In summary, we found that ECM plays important roles in mitochondria homeostasis in the muscle cells and neurons of Drosophila through its effects on Parkin/PINK1-mediated signaling in mitophagy, and we propose that ECM links mitochondrial homeostasis in neuron degeneration with the aging process. Future investigations of the molecular mechanism underlying the effect of ECM on mitophagy are warranted.
中文摘要 I
Abstract II
Table of Contents III
Figure List V
Table List VI

Introduction 1
1. CDGSH iron-sulfur domain-containing (CISD) protein family 1
2. Mitochondria .3
3. Mitochondrial quality control 5
4. Molecular mechanism of PINK1- and Parkin- mediated mitophagy 6
5. Mitophagy and Parkinson's disease (PD)- PINK1 and Parkin. 7
6. Mitochondrial dysfunciton 8
7.The aims of thesis 10

Materials and Methods 11
1. Drosophila genetics and stains 11
2. Generation of Transgenic flies 11
3. Behavior assay - Climbing assay 11
4. Lifespan 11
5. Western Blot 12
6. Real-time PCR (qPCR) 14
7. Adult Drosophila muscle dissection and immuonofluorescence 16
8. Salivary glands of larvae dissection and immunofluorescence 16
9. Drosophila Brain dissection and immunofluorescence 17
10. Paraffin section of muscle 18
11. Electroretinogram (ERG) 18



Results 19
The isoform protein of ECM was a dimer form 19
ECM is a mitochondria -associated protein which was more abundance in muscle of flies 19
Overexpression of ECM effected the distribution and structure of endoplasmic reticulum (ER) 20
ECM protein level was under Parkin- and PINK1- mediated degradation 20
The Mitochondrial enlargement and clusters phenotype could be rescued by PINK1 and Parkin 22
ECM overexpression induced muscle degeneration and enlarged muscle endo/ perimysium structure 22
ECM overexpression leading the climbing ability to defect have no obviously different in ECM co-express PINK1 or Parkin 23
Parkin or PINK1 prolong the lifespan of the ECM-expressed fly 23
Progressive accumulation of polyubiquitinated protein and autophagy marker aggregates is associated with ECM overexpression 24
Autophagic flux was blocked by ECM overexpression and stopped at lysosome fuse with autophagosome 24
ECM overexpression caused neurodegeneration in dopaminergic neuron, which was decreased cell number and the mitochondrial morphology enlargement 25
ECM overexpression in fly eyes caused neurodegeneration 26
OK107-gal4 drive ECM in mushroom body causes γ neuron axonal loss 26
γ neuron axonal loss induced by ECM become severe during the aging 27
Mitochondrial Mislocalization Underlies ECM-Induced Neuronal Dysfunction in Mushroom body 27
Summary 28

Discussions and Conclusion 29
References 34
Figures 40
Tables 64
1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D. J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." Nucleic Acids Res 25(17): 3389-3402.

2. Amr, S., C. Heisey, M. Zhang, X. J. Xia, K. H. Shows, K. Ajlouni, A. Pandya, L. S. Satin, H. El-Shanti and R. Shiang (2007). "A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2." Am J Hum Genet 81(4): 673-683.

3. Baker, B. M. and C. M. Haynes (2011). "Mitochondrial protein quality control during biogenesis and aging." Trends Biochem Sci 36(5): 254-261.

4. Bayrhuber, M., T. Meins, M. Habeck, S. Becker, K. Giller, S. Villinger, C. Vonrhein, C. Griesinger, M. Zweckstetter and K. Zeth (2008). "Structure of the human voltage-dependent anion channel." Proc Natl Acad Sci U S A 105(40): 15370-15375.

5. Beal, M. F. (1998). "Mitochondrial dysfunction in neurodegenerative diseases." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1366(1–2): 211-223.

6. Bereiter-Hahn, J. (1990). "Behavior of mitochondria in the living cell." Int Rev Cytol 122: 1-63.

7. Chan, H.-Y. (2014). "Roles of CG1458 in Drosophila Aging, Mitochondrial Dynamics and Cell Death."

8. Chan, N. C., A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa, R. L. Graham, S. Hess and D. C. Chan (2011). "Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy." Hum Mol Genet 20(9): 1726-1737.

9. Chang, N. C., M. Nguyen, M. Germain and G. C. Shore (2010). "Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1." Embo j 29(3): 606-618.

10. Chen, Y.-F., C.-Y. Wu, R. Kirby, C.-H. Kao and T.-F. Tsai (2010). "A role for the CISD2 gene in lifespan control and human disease." Annals of the New York Academy of Sciences 1201(1): 58-64.
11. Chen, Y. F., C. H. Kao, Y. T. Chen, C. H. Wang, C. Y. Wu, C. Y. Tsai, F. C. Liu, C. W. Yang, Y. H. Wei, M. T. Hsu, S. F. Tsai and T. F. Tsai (2009). "Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice." Genes Dev 23(10): 1183-1194.

12. Chistiakov, D. A., I. A. Sobenin, V. V. Revin, A. N. Orekhov and Y. V. Bobryshev (2014). "Mitochondrial Aging and Age-Related Dysfunction of Mitochondria." BioMed Research International 2014: 7.

13. Colca, J. R., W. G. McDonald, D. J. Waldon, J. W. Leone, J. M. Lull, C. A. Bannow, E. T. Lund and W. R. Mathews (2003). "Identification of a novel mitochondrial protein (“mitoNEET”) cross-linked specifically by a thiazolidinedione photoprobe." American Journal of Physiology - Endocrinology and Metabolism 286(2): E252-E260.

14. Conlan, A. R., H. L. Axelrod, A. E. Cohen, E. C. Abresch, J. Zuris, D. Yee, R. Nechushtai, P. A. Jennings and M. L. Paddock (2009). "Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2." J Mol Biol 392(1): 143-153.

15. Deas, E., N. W. Wood and H. Plun-Favreau (2011). "Mitophagy and Parkinson's disease: The PINK1–parkin link()." Biochimica et Biophysica Acta 1813(4): 623-633.

16. Gray, M. W., G. Burger and B. F. Lang (1999). "Mitochondrial evolution." Science 283(5407): 1476-1481.

17. Hoppins, S., L. Lackner and J. Nunnari (2007). "The machines that divide and fuse mitochondria." Annu Rev Biochem 76: 751-780.

18. Iijima-Ando, K., S. A. Hearn, C. Shenton, A. Gatt, L. Zhao and K. Iijima (2009). "Mitochondrial Mislocalization Underlies Aβ42-Induced Neuronal Dysfunction in a Drosophila Model of Alzheimer's Disease." PLoS ONE 4(12): e8310.

19. Ito, K., W. Awano, K. Suzuki, Y. Hiromi and D. Yamamoto (1997). "The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells." Development 124(4): 761-771.

20. Jones, M. A., S. Amr, A. Ferebee, P. Huynh, J. A. Rosenfeld, M. F. Miles, A. G. Davies, C. A. Korey, J. M. Warrick, R. Shiang, S. H. Elsea, S. Girirajan and M. Grotewiel (2014). "Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease." Biol Open 3(5): 342-352.

21. Karbowski, M. and R. J. Youle (2011). "Regulating Mitochondrial Outer Membrane Proteins by Ubiquitination and Proteasomal Degradation." Curr Opin Cell Biol 23(4): 476-482.

22. Kenyon, F. C. (1896). " The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda." J. Comp. Neurol. 6,: 133-210.

23. Klein, C. and A. Westenberger (2012). "Genetics of Parkinson’s Disease." Cold Spring Harbor Perspectives in Medicine 2(1): a008888.

24. Kuhlbrandt, W. (2015). "Structure and function of mitochondrial membrane protein complexes." BMC Biol 13: 89.

25. Lazarou, M., S. M. Jin, L. A. Kane and R. J. Youle (2012). "Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin." Dev Cell 22(2): 320-333.

26. Lim, K. L., V. L. Dawson and T. M. Dawson (2006). "Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases?" Neurobiol Aging 27(4): 524-529.

27. Lin, J., L. Zhang, S. Lai and K. Ye (2011). "Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains." PLoS ONE 6(9): e24790.

28. Lin, M. T. and M. F. Beal (2006). "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases." Nature 443(7113): 787-795.

29. Meissner, C., H. Lorenz, A. Weihofen, D. J. Selkoe and M. K. Lemberg (2011). "The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking." J Neurochem 117(5): 856-867.

30. Narendra, D., A. Tanaka, D. F. Suen and R. J. Youle (2008). "Parkin is recruited selectively to impaired mitochondria and promotes their autophagy." J Cell Biol 183(5): 795-803.

31. Narendra, D. P., S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier, J. Shen, M. R. Cookson and R. J. Youle (2010). "PINK1 is selectively stabilized on impaired mitochondria to activate Parkin." PLoS Biol 8(1): e1000298.

32. Ni, H. M., J. A. Williams and W. X. Ding (2015). "Mitochondrial dynamics and mitochondrial quality control." Redox Biol 4: 6-13.

33. Paddock, M. L., S. E. Wiley, H. L. Axelrod, A. E. Cohen, M. Roy, E. C. Abresch, D. Capraro, A. N. Murphy, R. Nechushtai, J. E. Dixon and P. A. Jennings (2007). "MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone." Proc Natl Acad Sci U S A 104(36): 14342-14347.

34. Palacino, J. J., D. Sagi, M. S. Goldberg, S. Krauss, C. Motz, M. Wacker, J. Klose and J. Shen (2004). "Mitochondrial dysfunction and oxidative damage in parkin-deficient mice." J Biol Chem 279(18): 18614-18622.

35. Palikaras, K. and N. Tavernarakis (2014). "Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis." Exp Gerontol 56: 182-188.

36. Pellegrino, M. W., A. M. Nargund and C. M. Haynes (2013). "Signaling the mitochondrial unfolded protein response." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833(2): 410-416.

37. Pesah, Y., T. Pham, H. Burgess, B. Middlebrooks, P. Verstreken, Y. Zhou, M. Harding, H. Bellen and G. Mardon (2004). "Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress." Development 131(9): 2183-2194.

38. Pickrell, A. M. and R. J. Youle (2015). "The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease." Neuron 85(2): 257-273.

39. Polymeropoulos, M. H., J. J. Higgins, L. I. Golbe, W. G. Johnson, S. E. Ide, G. Di Iorio, G. Sanges, E. S. Stenroos, L. T. Pho, A. A. Schaffer, A. M. Lazzarini, R. L. Nussbaum and R. C. Duvoisin (1996). "Mapping of a gene for Parkinson's disease to chromosome 4q21-q23." Science 274(5290): 1197-1199.

40. Poole, A. C., R. E. Thomas, S. Yu, E. S. Vincow and L. Pallanck (2010). "The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway." PLoS ONE 5(4): e10054.

41. Power, M. E. (1943). "The brain of Drosophila melanogaster." J. Morph. 72: 517-559.

42. Schwarz, T. L. (2013). "Mitochondrial Trafficking in Neurons." Cold Spring Harbor Perspectives in Biology 5(6).

43. Silvestri, L., V. Caputo, E. Bellacchio, L. Atorino, B. Dallapiccola, E. M. Valente and G. Casari (2005). "Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism." Hum Mol Genet 14(22): 3477-3492.

44. Smirnova, E., L. Griparic, D. L. Shurland and A. M. van der Bliek (2001). "Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells." Mol Biol Cell 12(8): 2245-2256.

45. Sohn, Y. S., S. Tamir, L. Song, D. Michaeli, I. Matouk, A. R. Conlan, Y. Harir, S. H. Holt, V. Shulaev, M. L. Paddock, A. Hochberg, I. Z. Cabanchick, J. N. Onuchic, P. A. Jennings, R. Nechushtai and R. Mittler (2013). "NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth." Proc Natl Acad Sci U S A 110(36): 14676-14681.

46. Soubannier, V., P. Rippstein, B. A. Kaufman, E. A. Shoubridge and H. M. McBride (2012). "Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo." PLoS ONE 7(12): e52830.

47. Stocker, R. F., M. C. Lienhard, A. Borst and K. F. Fischbach (1990). "Neuronal architecture of the antennal lobe in Drosophila melanogaster." Cell and Tissue Research 262(1): 9-34.

48. Strausfeld, N. J. (1976). "Atlas of an Insect Brain." Springer-Verlag.

49. Suen, D.-F., K. L. Norris and R. J. Youle (2008). "Mitochondrial dynamics and apoptosis." Genes & Development 22(12): 1577-1590.

50. Tanida, I. (2011). "Autophagy basics." Microbiol Immunol 55(1): 1-11.

51. Valente, E. M., P. M. Abou-Sleiman, V. Caputo, M. M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A. R. Bentivoglio, D. G. Healy, A. Albanese, R. Nussbaum, R. Gonzalez-Maldonado, T. Deller, S. Salvi, P. Cortelli, W. P. Gilks, D. S. Latchman, R. J. Harvey, B. Dallapiccola, G. Auburger and N. W. Wood (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1." Science 304(5674): 1158-1160.

52. van der Bliek, A. M., Q. Shen and S. Kawajiri (2013). "Mechanisms of mitochondrial fission and fusion." Cold Spring Harb Perspect Biol 5(6).

53. Wang, C., R. Lu, X. Ouyang, M. W. Ho, W. Chia, F. Yu and K. L. Lim (2007). "Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities." J Neurosci 27(32): 8563-8570.

54. Wang, C. H., C. H. Kao, Y. F. Chen, Y. H. Wei and T. F. Tsai (2014). "Cisd2 mediates lifespan: is there an interconnection among Ca(2)(+) homeostasis, autophagy, and lifespan?" Free Radic Res 48(9): 1109-1114.

55. Wiley, S. E., A. N. Murphy, S. A. Ross, P. van der Geer and J. E. Dixon (2007). "MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity." Proc Natl Acad Sci U S A 104(13): 5318-5323.

56. Wiley, S. E., M. L. Paddock, E. C. Abresch, L. Gross, P. van der Geer, R. Nechushtai, A. N. Murphy, P. A. Jennings and J. E. Dixon (2007). "The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster." J Biol Chem 282(33): 23745-23749.

57. Wu, C. Y., Y. F. Chen, C. H. Wang, C. H. Kao, H. W. Zhuang, C. C. Chen, L. K. Chen, R. Kirby, Y. H. Wei, S. F. Tsai and T. F. Tsai (2012). "A persistent level of Cisd2 extends healthy lifespan and delays aging in mice." Hum Mol Genet 21(18): 3956-3968.

58. Youle, R. J. and D. P. Narendra (2011). "Mechanisms of mitophagy." Nat Rev Mol Cell Biol 12(1): 9-14.

59. Youle, R. J. and A. M. van der Bliek (2012). "Mitochondrial Fission, Fusion, and Stress." Science 337(6098): 1062-1065.

60. Zhou, C., Y. Huang, Y. Shao, J. May, D. Prou, C. Perier, W. Dauer, E. A. Schon and S. Przedborski (2008). "The kinase domain of mitochondrial PINK1 faces the cytoplasm." Proceedings of the National Academy of Sciences 105(33): 12022-12027.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *