帳號:guest(18.226.187.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐名弘
作者(外文):Syu, Ming Hong
論文名稱(中文):以神經胺酸酶重組蛋白免疫引發交叉性抑制抗體之抗原表位研究
論文名稱(外文):Dissecting cross-reactive epitopes for the induction of NA-inhibiting antibodies via recombinant NA protein immunizations
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh Chin
口試委員(中文):趙裕展
馬徹
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080539
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:57
中文關鍵詞:A型流感病毒神經胺酸酶神經胺酸酶抑制抗體交叉性抑制抗體
外文關鍵詞:Influenza A virusesNeuraminidaseNeuraminidase-inhibiting antibodiescross-reactive antibodies
相關次數:
  • 推薦推薦:0
  • 點閱點閱:193
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經胺酸酶(Neuraminidase)為流感病毒膜上的醣蛋白,其功能為切割病毒顆粒與宿主細胞受體間的連結唾液酸來促進病毒的釋放及感染,也可以透過破壞於纖毛、黏膜以及細胞醣複合物之誘餌受體進而促使病毒顆粒的感染傳播。神經胺酸酶抑制抗體可以限制流感病毒的散播以及減緩臨床症狀程度。在本研究中,我們利用昆蟲桿狀病毒表現系統來構築以及純化pandemic H1N1 (pH1N1) (A/Texas/05/2009), H3N2 (A/Udorn/307/1972), H5N1 (A/Vietnam/1203/2004) and H7N9 (A/Shanghai/02/2013)重組神經胺酸酶蛋白。我們挑選位於酵素活性區周圍之344、365與366胺基酸位置。並利用點突變來產生H3N2與H7N9的突變神經胺酸酶蛋白。透過免疫N2帶有N344Y, N344H, E365I/D366S, E365T/D366N與E365T/D366A突變蛋白,N9帶有H344N, H344Y, T365I/A366S, T365E/A366D 與 T365T/A366N突變蛋白,進而剖析對於神經胺酸酶抑制抗體之影響。我們結果顯示H7N9帶有T365T/A366N突變重組神經胺酸酶可以誘發更好的神經胺酸酶抑制抗體產生對抗pH1N1病毒株。我們希望這個發現能夠對於未來之廣效性神經胺酸酶疫苗發展提供有用的資訊。
Neuraminidase (NA) is an influenza virus envelope glycoprotein that can remove sialic acid from receptors for virus release from infected cells. NA also contributes to viral transmission and infection by destroying decoy receptors on cilia, mucins, and cellular glycocalyx. NA-inhibiting (NI) antibodies are known to limit virus spreading and to mitigate clinical symptoms of influenza A virus infection. In this study, we used a baculovirus-insect cell expression system to construct and purify recombinant NA (rNA). We targeted the NA epitopes at residues at 344, 365, and 366, all located close to NA enzyme active sites. Site-directed mutagenesis at these three residues produced the H3N2 and H7N9 rNA proteins. Cross-reactive NI antibodies were dissected via N2 mutant proteins of N344Y, N344H, E365I/D366S, E365T/D366N and E365T/D366A, N9 mutant proteins of H344N, H344Y, T365I/A366S, T365E/A366D and T365T/A366N immunizations. Our result shows the N9 mutant protein of T365T/A366N elicited higher NI antibody titers against heterosubtypic pH1N1 virus than that elicited by N9 wild-type proteins. It is our hope that these findings provide useful information for the development of an NA-based universal influenza vaccine.
中文摘要 I
Abstract II
致謝 III
Content IV
1. Introduction 1
1.1. Influenza viruses 1
1.2. Influenza A viruses 2
1.3. Avian influenza viruses 3
1.4. NA antigen of influenza A viruses 5
1.5. NA-inhibiting antibodies 6
1.6. Study goals 8
2. Material and Methods 10
2.1. Cell lines 10
2.2. Bac-to-Bac® Baculovirus expression system 10
2.2.1. Construction of recombinant soluble Neuraminidase protein (rNA) 10
2.2.2. Site-directed mutagenesis PCR 11
2.2.3. Generating the recombinant Bacmids 14
2.2.4. Generating the recombinant Baculovirus 15
2.3. Production and purification of soluble recombinant neuraminidase proteins 15
2.3.1. generation of soluble recombinant neuraminidase protein 15
2.3.2. Purification of soluble recombinant neuraminidase proteins 16
2.4. Characterize recombinant neuraminidase proteins 17
2.4.1. Sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel preparation and electrophoresis 17
2.4.2. Western blotting 18
2.5. Mouse immunization regimens 18
2.6. Fetuin-based recombinant neuraminidase enzyme activity and Neuraminidase-inhibiting (NI) assay 19
2.6.1. Detection of enzyme activity of recombinant neuraminidase 19
2.6.2. Neuraminidase-inhibiting (NI) antibodies assay 20
2.7. Enzyme-linked immunosorbent assay (ELISA) 21
2.8. statistical analysis 21
3. Results 22
3.1. Expression, purification, and characterization of wild-type rNA proteins of pH1N1, H5N1, H3N2, and H7N9 viruses 22
3.2. NA amino acid sequence alignment analyses of pH1N1, H5N1, H3N2, and H7N9 viruses 24
3.3. Three dimensional structure of NA proteins of pH1N1, H5N1, H3N2, and H7N9 viruses based on homology modeling 25
3.4. Expression and purification of H3N2-rNA mutant proteins (H344N, H344Y, E365I/D366S, E365T/D366N, E365T/D366A) 26
3.5. NA-specific IgG antibodies elicited by H3N2 recombinant NAs immunization 27
3.6. NI antibodies elicited by wild-type or mutant H3N2-rNA protein immunizations 28
3.7. Expression and purification of H7N9-rNA mutant proteins (N344H, N344Y, T365I/A366S, T365E/A366D, T365T/A366N) 29
3.8. NA-specific IgG antibodies elicited by H7N9 recombinant NAs immunization 30
3.9. NI antibodies elicited by wild-type or mutant H7N9-rNA protein immunizations 31
4. Discussion 33
5. Reference 36
6. Figure 41
Fig. 1 Characterization of recombinant soluble Neuraminidase proteins (rNA) 42
Fig. 2 Amino acid sequences comparison between NA proteins of pH1N1, H5N1, H3N2 and H7N9 43
Fig. 3 Neuraminidase stuctures of pH1N1 NA, H5N1 NA, H3N2 NA and, H7N9 NA. 47
Fig. 4 Characterization of H3N2 mutant recombinant neuraminidase proteins. 48
Fig. 5 NA-specific IgG titers elicited by H3N2 recombinant neuraminidases 49
Fig. 6 N2 NA-inhibiting antibodies induced by wild-type or mutant recombinant neuraminidase proteins against homologous H3N2 virus, heterosubtyupic pH1N1 virus, H5N1 VLP and H7N9 VLP 50
Fig. 7 Characterization of H7N9 mutant recombinant neuraminidase proteins. 52
Fig. 8 NA-specific IgG titers elicited by H7N9 recombinant neuraminidases 53
Fig. 9 N9 NA-inhibiting antibodies induced by wild-type or mutant recombinant neuraminidase proteins against homologous H7N9 VLP, heterosubtyupic pH1N1 virus, H3N2 virus and H5N1 VLP 54
Table 1. The enzyme kinetics of wild-type Rna proteins evaluated by Lineweaver-Burk plots 56
Table 2. The immunization regimens of H3N2- rNA and H7N9-rNA 57

Bosch, B.J., Bodewes, R., de Vries, R.P., Kreijtz, J.H., Bartelink, W., van Amerongen, G., Rimmelzwaan, G.F., de Haan, C.A., Osterhaus, A.D., Rottier, P.J., 2010. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets. Journal of virology 84, 10366-10374.
Burnham, A.J., Baranovich, T., Govorkova, E.A., 2013. Neuraminidase inhibitors for influenza B virus infection: efficacy and resistance. Antiviral Res 100, 520-534.
Butler, J., Hooper, K.A., Petrie, S., Lee, R., Maurer-Stroh, S., Reh, L., Guarnaccia, T., Baas, C., Xue, L., Vitesnik, S., Leang, S.K., McVernon, J., Kelso, A., Barr, I.G., McCaw, J.M., Bloom, J.D., Hurt, A.C., 2014. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS Pathog 10, e1004065.
Castrucci, M.R., Kawaoka, Y., 1993. Biologic importance of neuraminidase stalk length in influenza A virus. Journal of virology 67, 759-764.
Chen, Z., Kim, L., Subbarao, K., Jin, H., 2012. The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine 30, 2516-2522.
Colman, P.M., Varghese, J.N., Laver, W.G., 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41-44.
Couch, R.B., Atmar, R.L., Franco, L.M., Quarles, J.M., Wells, J., Arden, N., Nino, D., Belmont, J.W., 2013. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J Infect Dis 207, 974-981.
Couch, R.B., Kasel, J.A., Gerin, J.L., Schulman, J.L., Kilbourne, E.D., 1974. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis 129, 411-420.
Eckard, L.E., Webby, R.J., 2015. Neuraminidase: Another Piece of the Influenza Vaccine Puzzle. J Infect Dis 212, 1180-1181.
Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D., 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of virology 79, 2814-2822.
Fritz, R., Sabarth, N., Kiermayr, S., Hohenadl, C., Howard, M.K., Ilk, R., Kistner, O., Ehrlich, H.J., Barrett, P.N., Kreil, T.R., 2012. A vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J Infect Dis 205, 28-34.
Gao, G.F., 2014. Influenza and the live poultry trade. Science 344, 235.
Gao, Q., Brydon, E.W., Palese, P., 2008. A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. Journal of virology 82, 6419-6426.
Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G.F., Wu, G., Wang, Y., Yuan, Z., Shu, Y., 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368, 1888-1897.
Grienke, U., Schmidtke, M., von Grafenstein, S., Kirchmair, J., Liedl, K.R., Rollinger, J.M., 2012. Influenza neuraminidase: a druggable target for natural products. Nat Prod Rep 29, 11-36.
Ilyushina, N.A., Bovin, N.V., Webster, R.G., 2012. Decreased neuraminidase activity is important for the adaptation of H5N1 influenza virus to human airway epithelium. J Virol 86, 4724-4733.
Imai, M., Watanabe, T., Hatta, M., Das, S.C., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., Li, C., Kawakami, E., Yamada, S., Kiso, M., Suzuki, Y., Maher, E.A., Neumann, G., Kawaoka, Y., 2012. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420-428.
Jagadesh, A., Salam, A.A., Mudgal, P.P., Arunkumar, G., 2016. Influenza virus neuraminidase (NA): a target for antivirals and vaccines. Arch Virol.
Johansson, B.E., Brett, I.C., 2008. Recombinant influenza B virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Hum Vaccin 4, 420-424.
Johansson, B.E., Cox, M.M., 2011. Influenza viral neuraminidase: the forgotten antigen. Expert Rev Vaccines 10, 1683-1695.
Kilbourne, E.D., 2006. Influenza pandemics of the 20th century. Emerg Infect Dis 12, 9-14.
Kilbourne, E.D., Pokorny, B.A., Johansson, B., Brett, I., Milev, Y., Matthews, J.T., 2004. Protection of mice with recombinant influenza virus neuraminidase. J Infect Dis 189, 459-461.
Kreijtz, J.H., Kroeze, E.J., Stittelaar, K.J., de Waal, L., van Amerongen, G., van Trierum, S., van Run, P., Bestebroer, T., Kuiken, T., Fouchier, R.A., Rimmelzwaan, G.F., Osterhaus, A.D., 2013. Low pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: a model to study intervention strategies. Vaccine 31, 4995-4999.
Laguio-Vila, M.R., Thompson, M.G., Reynolds, S., Spencer, S.M., Gaglani, M., Naleway, A., Ball, S., Bozeman, S., Baker, S., Martinez-Sobrido, L., Levine, M., Katz, J., Fry, A.M., Treanor, J.J., 2015. Comparison of serum hemagglutinin and neuraminidase inhibition antibodies after 2010-2011 trivalent inactivated influenza vaccination in healthcare personnel. Open Forum Infect Dis 2, ofu115.
Liu, D., Shi, W.F., Gao, G.F., 2014. Poultry carrying H9N2 act as incubators for novel human avian influenza viruses. Lancet 383, 869-869.
Liu, W.C., Lin, C.Y., Tsou, Y.T., Jan, J.T., Wu, S.C., 2015. Cross-Reactive Neuraminidase-Inhibiting Antibodies Elicited by Immunization with Recombinant Neuraminidase Proteins of H5N1 and Pandemic H1N1 Influenza A Viruses. J Virol 89, 7224-7234.
Lu, X., Liu, F., Zeng, H., Sheu, T., Achenbach, J.E., Veguilla, V., Gubareva, L.V., Garten, R., Smith, C., Yang, H., Stevens, J., Xu, X., Katz, J.M., Tumpey, T.M., 2014. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus. Virology 454-455, 169-175.
Martinet, W., Saelens, X., Deroo, T., Neirynck, S., Contreras, R., Min Jou, W., Fiers, W., 1997. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. Eur J Biochem 247, 332-338.
Monto, A.S., McKimm-Breschkin, J.L., Macken, C., Hampson, A.W., Hay, A., Klimov, A., Tashiro, M., Webster, R.G., Aymard, M., Hayden, F.G., Zambon, M., 2006. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother 50, 2395-2402.
Monto, A.S., Petrie, J.G., Cross, R.T., Johnson, E., Liu, M., Zhong, W., Levine, M., Katz, J.M., Ohmit, S.E., 2015. Antibody to Influenza Virus Neuraminidase: An Independent Correlate of Protection. J Infect Dis 212, 1191-1199.
Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., Kawaoka, Y., 2013. Identification of novel influenza A virus proteins translated from PA mRNA. J Virol 87, 2455-2462.
Osterhaus, A.D., Rimmelzwaan, G.F., Martina, B.E., Bestebroer, T.M., Fouchier, R.A., 2000. Influenza B virus in seals. Science 288, 1051-1053.
Pereira, H.G., 1969. Influenza: antigenic spectrum. Prog Med Virol 11, 46-79.
Rockman, S., Brown, L.E., Barr, I.G., Gilbertson, B., Lowther, S., Kachurin, A., Kachurina, O., Klippel, J., Bodle, J., Pearse, M., Middleton, D., 2013. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. Journal of virology 87, 3053-3061.
Sakai, K., Ami, Y., Tahara, M., Kubota, T., Anraku, M., Abe, M., Nakajima, N., Sekizuka, T., Shirato, K., Suzaki, Y., Ainai, A., Nakatsu, Y., Kanou, K., Nakamura, K., Suzuki, T., Komase, K., Nobusawa, E., Maenaka, K., Kuroda, M., Hasegawa, H., Kawaoka, Y., Tashiro, M., Takeda, M., 2014. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses. Journal of virology 88, 5608-5616.
Smith, G.J., Vijaykrishna, D., Bahl, J., Lycett, S.J., Worobey, M., Pybus, O.G., Ma, S.K., Cheung, C.L., Raghwani, J., Bhatt, S., Peiris, J.S., Guan, Y., Rambaut, A., 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122-1125.
Takashita, E., Meijer, A., Lackenby, A., Gubareva, L., Rebelo-de-Andrade, H., Besselaar, T., Fry, A., Gregory, V., Leang, S.K., Huang, W., Lo, J., Pereyaslov, D., Siqueira, M.M., Wang, D., Mak, G.C., Zhang, W., Daniels, R.S., Hurt, A.C., Tashiro, M., 2015. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013-2014. Antiviral Res 117, 27-38.
Taubenberger, J.K., Morens, D.M., 2006. 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12, 15-22.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O., 2012. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109, 4269-4274.
Vandegrift, K.J., Sokolow, S.H., Daszak, P., Kilpatrick, A.M., 2010. Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci 1195, 113-128.
Wang, Y., Dai, Z., Cheng, H., Liu, Z., Pan, Z., Deng, W., Gao, T., Li, X., Yao, Y., Ren, J., Xue, Y., 2013. Towards a better understanding of the novel avian-origin H7N9 influenza A virus in China. Sci Rep 3, 2318.
Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y., 1992. Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-179.
Wohlbold, T.J., Krammer, F., 2014. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 6, 2465-2494.
Wohlbold, T.J., Nachbagauer, R., Xu, H., Tan, G.S., Hirsh, A., Brokstad, K.A., Cox, R.J., Palese, P., Krammer, F., 2015. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio 6, e02556.
Wu, Y., Wu, Y., Tefsen, B., Shi, Y., Gao, G.F., 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22, 183-191.
Xu, X., Zhu, X., Dwek, R.A., Stevens, J., Wilson, I.A., 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J Virol 82, 10493-10501.
Zhang, Y., Zhang, Q., Kong, H., Jiang, Y., Gao, Y., Deng, G., Shi, J., Tian, G., Liu, L., Liu, J., Guan, Y., Bu, Z., Chen, H., 2013. H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340, 1459-1463.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *