帳號:guest(3.145.71.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙盛揚
作者(外文):Chao, Sheng-Yang
論文名稱(中文):Foxm1調控Kras突變之肺癌的腫瘤維持
論文名稱(外文):The Role of Foxm1 in Maintenance of Oncogenic Kras Induced Lung Tumor
指導教授(中文):王翊青
指導教授(外文):Wang,I-Ching
口試委員(中文):楊嘉鈴
莊永仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080535
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:93
中文關鍵詞:肺癌腫瘤維持
外文關鍵詞:Lung cancerFOXM1KRASTumor maintenance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺癌是一種非常嚴重及惡性的疾病。其中,肺腺癌是肺癌中最主要的一種,每一年造成全球大約五十萬人死亡。KRAS基因的突變是肺腺癌的主要成因之一,然而截至目前為止臨床上仍然沒有有效的藥物可以直接抑制突變的KRAS蛋白。因此,找出新的KRAS訊號下游分子標的並可藉由抑制KRAS訊號下游標的來幫助治療帶有KRAS突變的肺癌病人非常重要。KRAS 經由RAF/MEK/ERK 訊號傳遞路徑活化轉錄因子Forkhead box M1 (FOXM1) 進而調控細胞週期相關基因並且促進細胞增生。除此之外,FOXM1也被發現會調控血管新生、上皮間質轉化、轉移等癌惡化等特徵。根據先前的研究,我們發現在SPC-rtTA/TetO-Cre/TetO-KrasG12D/Foxm1fl/fl 基因轉殖鼠中,表現致癌基因KrasG12D並同時剔除Foxm1基因可抑制因KrasG12D所誘導的腫瘤數量及體積。這結果顯示出Foxm1 對於KrasG12D 所誘導的腫瘤之起始是重要且必須的。在此,我們進一步探討Foxm1 對於KrasG12D 所誘導的腫瘤之維持是否也扮演不可或缺的角色。我們給予CCSP-rtTA/TetO-KrasG12D/Foxm1fl/fl 基因轉殖鼠含有Doxycycline的食物來誘導肺腫瘤的產生,之後再將帶有CRE 基因的線病毒利用氣管注射感染肺腫瘤並且剔除Foxm1。 我們使用micro CT 檢測同一隻小鼠給予病毒前後的腫瘤大小,發現將Foxm1 去除後造成腫瘤的縮小。同時,細胞實驗也證明抑制FOXM1 可以抑制肺癌細胞以及帶有KrasG12D 的肺支氣管上皮細胞之細胞增生和細胞非貼附生長等癌化特性。我們的研究顯示Foxm1對於維持KrasG12D所誘導的細胞癌化特性和腫瘤大小的必要性。因此在臨床上,抑制FOXM1 的方式將具有潛力來治療帶有KRAS基因突變的肺癌病人。
Lung adenocarcinoma, the leading subtype of non-small cell lung cancer (NSCLC), is responsible for 500,000 deaths per year worldwide. Gain-of-function mutation of Kras gene is one of the major causes of NSCLC and no effective chemotherapy agent is available for cancers carry KRAS mutation. Hence, identifying new downstream molecular targets of KRAS signaling is critical for improving current therapeutic outcomes. Many reports indicated KRAS signaling activates downstream Forkhead box M1 (Foxm1) transcription factor that regulates transcription network of cell cycle regulatory genes, angiogenesis, genes related to epithelial to mesenchymal transition (EMT), cell migration and cancer stemness. We have previously generated SPC-rtTA/TetO-Cre/TetO-KrasG12D/Foxm1fl/fl mice and demonstrated that deleting Foxm1 alleles in respiratory epithelial cells diminished the number and size of lung tumors induced by oncogenic Kras. This result shows that Foxm1 is required for tumor initiation and proliferation of Kras gain-of-function mutant cells. Herein, we further investigate the role of Foxm1 in tumor maintenance and progression. After feeding doxycycline food for 5.5 or 7.5 months, lung tumors bearing CCSP-rtTA/TetO-KrasG12D/Foxm1fl/fl mice were intratracheal injected with CRE recombinase expressing viruses to cause genetically deletion of Foxm1 gene alleles in lungs. Micro Computed tomography (micro CT) images demonstrated that Foxm1 knockout caused lung tumor regression in vivo. Moreover, shRNA mediated knock down of FOXM1 expression inhibits cell proliferation, anchorage independent growth of KRAS mutated lung cancer cell lines and oncogenic KRAS expressed lung immortalized cell line with p53 inhibiton in vitro. This result suggested FOXM1 could be a potential therapeutic target to improve the outcome of KRAS mutant lung cancer treatment.
Acknowledgement 3
中文摘要 4
Abstract 5
Introduction 6
Results 12
AD-CRE-IRES-GFP virus is functional to delete Foxm1 gene alleles in vitro 12
Cre adenovirus mediated knockout of Foxm1 gene alleles in preexist lung tumors of CCSP-rtTA/TetO-KrasG12D/Foxm1fl/fl mouse model caused tumor regression. 13
pINDUCER-shFOXM1 construct is functional and knockdown Foxm1 inhibit H23 and A549 cell proliferation and anchorage independent properties 14
EGFP-KRAS fusion proteins localized to plasma membrane are functional to activate KRAS downstream signaling pathway 15
Generation of stable cell lines expressing EGFP-KRAS fusion protein by lentivirus infection 16
EGFP-KRAS can increase cell proliferation but anchorage independent property 16
EGFP-KRAS activation and P53 inhibition synergistically promote anchorage independent property. 17
Conclusions and Discussion 19
EGFP-KRAS fusion protein promoted cell proliferation of BEAS-2B and induced anchorage independent property synergistically with p53 inhibition. 19
Knockdown of Foxm1 in BEAS2B-p53DN-GSE56 and lung cancer cell lung (H23 and A549) decrease cell proliferation and anchorage independent growth property 19
Knockout of Foxm1 gene alleles in preexisted KRAS mutated lung tumors caused tumor regression 20
Prospective 24
Materials and Methods 25
Plasmids constructions 25
Cell culture 27
Transient transfection 28
Lentivirus generation and cell line generation 28
Fluorescent microscopy 29
Western blotting 29
MTT assay 30
Soft agar assay 31
Real-time reverse transcription-PCR analysis for gene expression studies 31
Adenovirus generation, purification and titer determination 32
intratracheal injection of adenovirus, microCT and image analysis 32
Genotyping 33
Statistics 34
References 35
Figures 40
Tables 69
Supplementary figures 78
1. Heron, M., Deaths: Leading Causes for 2013. Natl Vital Stat Rep, 2016. 65(2): p. 1-95.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2015. CA Cancer J Clin, 2015. 65(1): p. 5-29.
3. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
4. Lemjabbar-Alaoui, H., et al., Lung cancer: Biology and treatment options. Biochim Biophys Acta, 2015. 1856(2): p. 189-210.
5. Wood, S.L., et al., Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev, 2015. 41(4): p. 361-75.
6. Chen, Z., et al., Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer, 2014. 14(8): p. 535-46.
7. Goldstraw, P., et al., The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol, 2007. 2(8): p. 706-14.
8. Imielinski, M., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 2012. 150(6): p. 1107-20.
9. Hecht, S.S., Lung carcinogenesis by tobacco smoke. Int J Cancer, 2012. 131(12): p. 2724-32.
10. Liu, X., et al., Cigarette smoke extract induces DNA damage but not apoptosis in human bronchial epithelial cells. Am J Respir Cell Mol Biol, 2005. 33(2): p. 121-9.
11. Samet, J.M., et al., Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res, 2009. 15(18): p. 5626-45.
12. Devarakonda, S., D. Morgensztern, and R. Govindan, Genomic alterations in lung adenocarcinoma. Lancet Oncol, 2015. 16(7): p. e342-51.
13. Weiss, J.M. and T.E. Stinchcombe, Second-Line Therapy for Advanced NSCLC. Oncologist, 2013. 18(8): p. 947-53.
14. Karachaliou, N., et al., KRAS mutations in lung cancer. Clin Lung Cancer, 2013. 14(3): p. 205-14.
15. Mascaux, C., et al., The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer, 2005. 92(1): p. 131-9.
16. Steelman, L.S., et al., JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia, 2004. 18(2): p. 189-218.
17. Schubbert, S., K. Shannon, and G. Bollag, Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer, 2007. 7(4): p. 295-308.
18. Lau, K.S. and K.M. Haigis, Non-redundancy within the RAS oncogene family: insights into mutational disparities in cancer. Mol Cells, 2009. 28(4): p. 315-20.
19. Tuveson, D.A., et al., Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 2004. 5(4): p. 375-87.
20. Cox, A.D., C.J. Der, and M.R. Philips, Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery? Clin Cancer Res, 2015. 21(8): p. 1819-27.
21. Cox, A.D., et al., Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov, 2014. 13(11): p. 828-51.
22. Vasan, N., J.L. Boyer, and R.S. Herbst, A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Clin Cancer Res, 2014. 20(15): p. 3921-30.
23. Leung, T.W., et al., Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett, 2001. 507(1): p. 59-66.
24. Wang, I.C., et al., Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol, 2005. 25(24): p. 10875-94.
25. Ma, R.Y., et al., Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci, 2005. 118(Pt 4): p. 795-806.
26. Major, M.L., R. Lepe, and R.H. Costa, Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol, 2004. 24(7): p. 2649-61.
27. Korver, W., et al., The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics, 1997. 46(3): p. 435-42.
28. Yao, K.M., et al., Molecular analysis of a novel winged helix protein, WIN. Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain. J Biol Chem, 1997. 272(32): p. 19827-36.
29. Luscher-Firzlaff, J.M., et al., Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene, 1999. 18(41): p. 5620-30.
30. Ye, H., et al., Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol, 1997. 17(3): p. 1626-41.
31. Kaestner, K.H., W. Knochel, and D.E. Martinez, Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev, 2000. 14(2): p. 142-6.
32. Korver, W., J. Roose, and H. Clevers, The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res, 1997. 25(9): p. 1715-9.
33. Wang, I.C., et al., Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis. PLoS One, 2009. 4(8): p. e6609.
34. Anders, L., et al., A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell, 2011. 20(5): p. 620-34.
35. Fu, Z., et al., Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol, 2008. 10(9): p. 1076-82.
36. Pilarsky, C., et al., Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia, 2004. 6(6): p. 744-50.
37. Kalin, T.V., et al., Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res, 2006. 66(3): p. 1712-20.
38. Kim, I.M., et al., The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res, 2006. 66(4): p. 2153-61.
39. Yoshida, Y., et al., The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology, 2007. 132(4): p. 1420-31.
40. Wang, I.C., et al., Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene, 2008. 27(30): p. 4137-49.
41. Gusarova, G.A., et al., A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest, 2007. 117(1): p. 99-111.
42. Siddiqui, I.A., et al., Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci, 2015. 1348(1): p. 20-31.
43. Fisher, G.H., et al., Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev, 2001. 15(24): p. 3249-62.
44. Chin, L., et al., Essential role for oncogenic Ras in tumour maintenance. Nature, 1999. 400(6743): p. 468-72.
45. Collins, M.A., et al., Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest, 2012. 122(2): p. 639-53.
46. Wang, I.C., et al., Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras. Oncogene, 2013.
47. Prost, S., et al., Adenovirus-mediated Cre deletion of floxed sequences in primary mouse cells is an efficient alternative for studies of gene deletion. Nucleic Acids Res, 2001. 29(16): p. E80.
48. DuPage, M., A.L. Dooley, and T. Jacks, Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc, 2009. 4(7): p. 1064-72.
49. Anderson, R.D., et al., A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther, 2000. 7(12): p. 1034-8.
50. Guadamillas, M.C., A. Cerezo, and M.A. Del Pozo, Overcoming anoikis--pathways to anchorage-independent growth in cancer. J Cell Sci, 2011. 124(Pt 19): p. 3189-97.
51. Reddel, R.R., et al., Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res, 1988. 48(7): p. 1904-9.
52. Ahuja, D., M.T. Saenz-Robles, and J.M. Pipas, SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene, 2005. 24(52): p. 7729-45.
53. Park, Y.H., et al., Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol, 2015. 287(3): p. 240-5.
54. Ossovskaya, V.S., et al., Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci U S A, 1996. 93(19): p. 10309-14.
55. Yokota, J., Tumor progression and metastasis. Carcinogenesis, 2000. 21(3): p. 497-503.
56. Hanna, J.M. and M.W. Onaitis, Cell of origin of lung cancer. J Carcinog, 2013. 12: p. 6.
57. Ebi, H., et al., Not just gRASping at flaws: finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers. Cancer Sci, 2014. 105(5): p. 499-505.
58. Hu, C.J., et al., The FOXM1-induced resistance to oxaliplatin is partially mediated by its novel target gene Mcl-1 in gastric cancer cells. Biochim Biophys Acta, 2015. 1849(3): p. 290-9.
59. Halasi, M. and A.L. Gartel, Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PLoS One, 2012. 7(2): p. e31761.
60. Karadedou, C.T., et al., FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer. Oncogene, 2012. 31(14): p. 1845-58.
61. Zhang, Y., et al., FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res, 2008. 68(21): p. 8733-42.
62. Rampetsreiter, P., E. Casanova, and R. Eferl, Drug Discov Today Dis Models, 2011. 8(2-3): p. 67-74.
63. de Seranno, S. and R. Meuwissen, Progress and applications of mouse models for human lung cancer. Eur Respir J, 2010. 35(2): p. 426-43.
64. Meerbrey, K.L., et al., The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A, 2011. 108(9): p. 3665-70.
65. Beronja, S., et al., Rapid functional dissection of genetic networks via tissue-specific transduction and RNAi in mouse embryos. Nat Med, 2010. 16(7): p. 821-7.
66. Wang, I.C., et al., FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem, 2008. 283(30): p. 20770-8.
67. Wei, S.J., et al., Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. PLoS One, 2013. 8(11): p. e81068.
68. Krupczak-Hollis, K., et al., The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol, 2004. 276(1): p. 74-88.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *