|
1. Martin, W., and Mentel, M. (2010) The origin of mitochondria. Nature Education 3, 58 2. Harbauer, A. B., Zahedi, R. P., Sickmann, A., Pfanner, N., and Meisinger, C. (2014) The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell metabolism 19, 357-372 3. Cagin, U., and Enriquez, J. A. (2015) The complex crosstalk between mitochondria and the nucleus: What goes in between? The international journal of biochemistry & cell biology 63, 10-15 4. Yun, J., and Finkel, T. (2014) Mitohormesis. Cell metabolism 19, 757-766 5. Shadel, G. S., and Horvath, T. L. (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569 6. Neupert, W., and Herrmann, J. M. (2007) Translocation of proteins into mitochondria. Annual review of biochemistry 76, 723-749 7. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644 8. Geissler, A., Krimmer, T., Bomer, U., Guiard, B., Rassow, J., and Pfanner, N. (2000) Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Molecular biology of the cell 11, 3977-3991 9. Shiota, T., Mabuchi, H., Tanaka-Yamano, S., Yamano, K., and Endo, T. (2011) In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. Proceedings of the National Academy of Sciences of the United States of America 108, 15179-15183 10. Omura, T. (1998) Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. Journal of biochemistry 123, 1010-1016 11. Chandel, N. S. (2014) Mitochondria as signaling organelles. BMC biology 12, 34 12. Kotiadis, V. N., Duchen, M. R., and Osellame, L. D. (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochimica et biophysica acta 1840, 1254-1265 13. Yogev, O., and Pines, O. (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochimica et biophysica acta 1808, 1012-1020 14. Regev-Rudzki, N., and Pines, O. (2007) Eclipsed distribution: a phenomenon of dual targeting of protein and its significance. BioEssays : news and reviews in molecular, cellular and developmental biology 29, 772-782 15. Monaghan, R. M., and Whitmarsh, A. J. (2015) Mitochondrial proteins moonlighting in the 71 nucleus. Trends in biochemical sciences 40, 728-735 16. Nargund, A. M., Pellegrino, M. W., Fiorese, C. J., Baker, B. M., and Haynes, C. M. (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science (New York, N.Y.) 337, 587-590 17. Monaghan, R. M., Barnes, R. G., Fisher, K., Andreou, T., Rooney, N., Poulin, G. B., and Whitmarsh, A. J. (2015) A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nature cell biology 17, 782-792 18. Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T. H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E., and Michelakis, E. D. (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97 19. Ahmed, S., Passos, J. F., Birket, M. J., Beckmann, T., Brings, S., Peters, H., Birch-Machin, M. A., von Zglinicki, T., and Saretzki, G. (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of cell science 121, 1046-1053 20. Chen, L. Y., Zhang, Y., Zhang, Q., Li, H., Luo, Z., Fang, H., Kim, S. H., Qin, L., Yotnda, P., Xu, J., Tu, B. P., Bai, Y., and Songyang, Z. (2012) Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Molecular cell 47, 839-850 21. Chi, Z., Nie, L., Peng, Z., Yang, Q., Yang, K., Tao, J., Mi, Y., Fang, X., Balajee, A. S., and Zhao, Y. (2012) RecQL4 cytoplasmic localization: implications in mitochondrial DNA oxidative damage repair. The international journal of biochemistry & cell biology 44, 1942-1951 22. Croteau, D. L., Rossi, M. L., Canugovi, C., Tian, J., Sykora, P., Ramamoorthy, M., Wang, Z. M., Singh, D. K., Akbari, M., Kasiviswanathan, R., Copeland, W. C., and Bohr, V. A. (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging cell 11, 456-466 23. Yogev, O., Naamati, A., and Pines, O. (2011) Fumarase: a paradigm of dual targeting and dual localized functions. The FEBS journal 278, 4230-4242 24. Forkink, M., Manjeri, G. R., Liemburg-Apers, D. C., Nibbeling, E., Blanchard, M., Wojtala, A., Smeitink, J. A., Wieckowski, M. R., Willems, P. H., and Koopman, W. J. (2014) Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. Biochimica et biophysica acta 1837, 1247-1256 25. Sazanov, L. A. (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nature reviews. Molecular cell biology 16, 375-388 26. Smeitink, J., van den Heuvel, L., and DiMauro, S. (2001) The genetics and pathology of oxidative phosphorylation. Nature reviews. Genetics 2, 342-352 27. Hatefi, Y., Haavik, A. G., and Griffiths, D. E. (1962) Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. The Journal of biological chemistry 237, 1676-1680 72 28. Acín-Pérez, R., Fernández-Silva, P., Peleato, M. L., Pérez-Martos, A., and Enriquez, J. A. (2008) Respiratory active mitochondrial supercomplexes. Molecular cell 32, 529-539 29. Vartak, R., Porras, C. A., and Bai, Y. (2013) Respiratory supercomplexes: structure, function and assembly. Protein & cell 4, 582-590 30. Maranzana, E., Barbero, G., Falasca, A. I., Lenaz, G., and Genova, M. L. (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxidants & redox signaling 19, 1469-1480 31. Vinothkumar, K. R., Zhu, J., and Hirst, J. (2014) Architecture of mammalian respiratory complex I. Nature 515, 80-84 32. Janssen, R. J., Nijtmans, L. G., van den Heuvel, L. P., and Smeitink, J. A. (2006) Mitochondrial complex I: structure, function and pathology. Journal of inherited metabolic disease 29, 499-515 33. Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annual review of biochemistry 75, 69-92 34. Sazanov, L. A., and Hinchliffe, P. (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science (New York, N.Y.) 311, 1430-1436 35. Hyslop, S. J., Duncan, A. M., Pitkanen, S., and Robinson, B. H. (1996) Assignment of the PSST subunit gene of human mitochondrial complex I to chromosome 19p13. Genomics 37, 375-380 36. Hirst, J. (2013) Mitochondrial complex I. Annual review of biochemistry 82, 551-575 37. Hirst, J., Carroll, J., Fearnley, I. M., Shannon, R. J., and Walker, J. E. (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochimica et biophysica acta 1604, 135-150 38. Leigh, D. (1951) Subacute necrotizing encephalomyelopathy in an infant. Journal of neurology, neurosurgery, and psychiatry 14, 216 39. Triepels, R. H., van den Heuvel, L. P., Loeffen, J. L., Buskens, C. A., Smeets, R. J., Rubio Gozalbo, M. E., Budde, S. M., Mariman, E. C., Wijburg, F. A., Barth, P. G., Trijbels, J. M., and Smeitink, J. A. (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Annals of neurology 45, 787-790 40. Andreazza, A. C., Wang, J. F., Salmasi, F., Shao, L., and Young, L. T. (2013) Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. Journal of neurochemistry 127, 552-561 41. Andreazza, A. C., Shao, L., Wang, J. F., and Young, L. T. (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Archives of general psychiatry 67, 360-368 42. Frykman, S., Teranishi, Y., Hur, J. Y., Sandebring, A., Yamamoto, N. G., Ancarcrona, M., Nishimura, T., Winblad, B., Bogdanovic, N., Schedin-Weiss, S., Kihara, T., and Tjernberg, L. O. (2012) Identification of two novel synaptic gamma-secretase associated proteins that affect amyloid beta-peptide levels without altering Notch processing. Neurochemistry 73 international 61, 108-118 43. Meluh, P. B., and Koshland, D. (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Molecular biology of the cell 6, 793-807 44. Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K., and Chen, D. J. (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279 45. Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., Chang, H. M., and Yeh, E. T. (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. Journal of immunology (Baltimore, Md. : 1950) 157, 4277-4281 46. Boddy, M. N., Howe, K., Etkin, L. D., Solomon, E., and Freemont, P. S. (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971-982 47. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107 48. Wilson, V. G. (2009) SUMO Regulation of Cellular Processes, 49. Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in health and disease. Annual review of biochemistry 82, 357-385 50. Guo, D., Han, J., Adam, B. L., Colburn, N. H., Wang, M. H., Dong, Z., Eizirik, D. L., She, J. X., and Wang, C. Y. (2005) Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochemical and biophysical research communications 337, 1308-1318 51. Wei, W., Yang, P., Pang, J., Zhang, S., Wang, Y., Wang, M. H., Dong, Z., She, J. X., and Wang, C. Y. (2008) A stress-dependent SUMO4 sumoylation of its substrate proteins. Biochemical and biophysical research communications 375, 454-459 52. Xu, Z., and Au, S. W. (2005) Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. The Biochemical journal 386, 325-330 53. Hickey, C. M., Wilson, N. R., and Hochstrasser, M. (2012) Function and regulation of SUMO proteases. Nature reviews. Molecular cell biology 13, 755-766 54. Gareau, J. R., and Lima, C. D. (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nature reviews. Molecular cell biology 11, 861-871 55. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276, 35368-35374 56. Denuc, A., and Marfany, G. (2010) SUMO and ubiquitin paths converge. Biochemical 74 Society transactions 38, 34-39 57. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., and Vertegaal, A. C. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular & cellular proteomics : MCP 7, 132-144 58. Rodriguez, M. S., Dargemont, C., and Hay, R. T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. The Journal of biological chemistry 276, 12654-12659 59. Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A., and Sistonen, L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the United States of America 103, 45-50 60. Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. The EMBO journal 25, 5083-5093 61. Matic, I., Schimmel, J., Hendriks, I. A., van Santen, M. A., van de Rijke, F., van Dam, H., Gnad, F., Mann, M., and Vertegaal, A. C. O. (2010) Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Molecular cell 39, 641-652 62. Picard, N., Caron, V., Bilodeau, S., Sanchez, M., Mascle, X., Aubry, M., and Tremblay, A. (2012) Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta. Molecular and cellular biology 32, 2709-2721 63. Kerscher, O. (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO reports 8, 550-555 64. Droescher, M., Chaugule, V. K., and Pichler, A. (2013) SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular medicine 15, 639-660 65. Wilkinson, K. A., and Henley, J. M. (2010) Mechanisms, regulation and consequences of protein SUMOylation. The Biochemical journal 428, 133-145 66. Wang, L., Ma, Q., Yang, W., Mackensen, G. B., and Paschen, W. (2012) Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons. Journal of neurochemistry 123, 349-359 67. Guo, C., and Henley, J. M. (2014) Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB life 66, 71-77 68. Saitoh, H., and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275, 6252-6258 69. Wood, L. D., Irvin, B. J., Nucifora, G., Luce, K. S., and Hiebert, S. W. (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor 75 suppressor. Proceedings of the National Academy of Sciences of the United States of America 100, 3257-3262 70. Xia, P., Wang, S., Xiong, Z., Ye, B., Huang, L. Y., Han, Z. G., and Fan, Z. (2015) IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation. Nature communications 6, 8132 71. Tempe, D., Piechaczyk, M., and Bossis, G. (2008) SUMO under stress. Biochemical Society transactions 36, 874-878 72. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H., and Miyamoto, S. (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115, 565-576 73. Bassi, C., Ho, J., Srikumar, T., Dowling, R. J. O., Gorrini, C., Miller, S. J., Mak, T. W., Neel, B. G., Raught, B., and Stambolic, V. (2013) Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science (New York, N.Y.) 341, 395-399 74. Watts, F. Z. (2006) Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA repair 5, 399-403 75. Kolesar, P., Sarangi, P., Altmannova, V., Zhao, X., and Krejci, L. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic acids research 40, 7831-7843 76. Enserink, J. M. (2015) Sumo and the cellular stress response. Cell division 10, 4 77. Sahin, U., Ferhi, O., Jeanne, M., Benhenda, S., Berthier, C., Jollivet, F., Niwa-Kawakita, M., Faklaris, O., Setterblad, N., de The, H., and Lallemand-Breitenbach, V. (2014) Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. The Journal of cell biology 204, 931-945 78. Bossis, G., Malnou, C. E., Farras, R., Andermarcher, E., Hipskind, R., Rodriguez, M., Schmidt, D., Muller, S., Jariel-Encontre, I., and Piechaczyk, M. (2005) Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Molecular and cellular biology 25, 6964-6979 79. Feligioni, M., and Nistico, R. (2013) SUMO: a (oxidative) stressed protein. Neuromolecular medicine 15, 707-719 80. Gius, D., Botero, A., Shah, S., and Curry, H. A. (1999) Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicology letters 106, 93-106 81. Shim, H. S., Wei, M., Brandhorst, S., and Longo, V. D. (2015) Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer research 75, 1056-1067 82. Lee, J., Yang, D. J., Lee, S., Hammer, G. D., Kim, K. W., and Elmquist, J. K. (2016) Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination. Scientific reports 6 83. Bae, S.-H., Jeong, J.-W., Park, J. A., Kim, S.-H., Bae, M.-K., Choi, S.-J., and Kim, K.-W. 76 (2004) Sumoylation increases HIF-1α stability and its transcriptional activity. Biochemical and biophysical research communications 324, 394-400 84. Berta, M. A., Mazure, N., Hattab, M., Pouysségur, J., and Brahimi-Horn, M. C. (2007) SUMOylation of hypoxia-inducible factor-1α reduces its transcriptional activity. Biochemical and biophysical research communications 360, 646-652 85. Nunez-O'Mara, A., Gerpe-Pita, A., Pozo, S., Carlevaris, O., Urzelai, B., Lopitz-Otsoa, F., Rodriguez, M. S., and Berra, E. (2015) PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. Journal of cell science 128, 40-49 86. Wang, J., Wang, Y., and Lu, L. (2012) De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells. The Journal of biological chemistry 287, 12469-12479 87. Chen, H., and Chan, D. C. (2005) Emerging functions of mammalian mitochondrial fusion and fission. Human molecular genetics 14, R283-R289 88. Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C.-R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., and Feldman, E. L. (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. The FASEB Journal 23, 3917-3927 89. Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental cell 1, 515-525 90. Wasiak, S., Zunino, R., and McBride, H. M. (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. The Journal of cell biology 177, 439-450 91. Prudent, J., Zunino, R., Sugiura, A., Mattie, S., Shore, G. C., and McBride, H. M. (2015) MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. Molecular cell 59, 941-955 92. Zhu, S., and Matunis, M. J. (2009) Characterization of the effects and functions of sumoylation through rapamycin-mediated heterodimerization. Methods in molecular biology (Clifton, N.J.) 497, 153-164 93. Sohn, S. Y., and Hearing, P. (2016) The adenovirus E4-ORF3 protein functions as a SUMO E3 ligase for TIF-1gamma sumoylation and poly-SUMO chain elongation. Proceedings of the National Academy of Sciences of the United States of America 94. Berndt, A., Hofmann-Winkler, H., Tavalai, N., Hahn, G., and Stamminger, T. (2009) Importance of covalent and noncovalent SUMO interactions with the major human cytomegalovirus transactivator IE2p86 for viral infection. Journal of virology 83, 12881-12894 95. Liu, Y. C., Lin, M. C., Chen, H. C., Tam, M. F., and Lin, L. Y. (2011) The role of small ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive 77 transcription factor 1. The Journal of biological chemistry 286, 42818-42829 96. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America 101, 14373-14378 97. Carroll, J., Fearnley, I. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Molecular & Cellular Proteomics 2, 117-126 98. Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M., Tollervey, D., and Hurt, E. (2006) Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway. Traffic (Copenhagen, Denmark) 7, 1311-1321 99. Finkbeiner, E., Haindl, M., and Muller, S. (2011) The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. The EMBO journal 30, 1067-1078 100. Petrungaro, C., and Riemer, J. (2014) Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins. Biochemical Society transactions 42, 952-958 101. Park, J. H., Lee, S. W., Yang, S. W., Yoo, H. M., Park, J. M., Seong, M. W., Ka, S. H., Oh, K. H., Jeon, Y. J., and Chung, C. H. (2014) Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nature communications 5 102. Harder, Z., Zunino, R., and McBride, H. (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Current Biology 14, 340-345 103. Halliwell, B. (2007) Oxidative stress and cancer: have we moved forward? Biochemical Journal 401, 1-11 104. Forkink, M., Basit, F., Teixeira, J., Swarts, H. G., Koopman, W. J., and Willems, P. H. (2015) Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells. Redox biology 6, 607-616 105. Sang, J., Yang, K., Sun, Y., Han, Y., Cang, H., Chen, Y., Shi, G., Wang, K., Zhou, J., Wang, X., and Yi, J. (2011) SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner. The Biochemical journal 435, 489-498 106. Bossis, G., and Melchior, F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular cell 21, 349-357 107. Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L., and Liebler, D. C. (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chemical research in toxicology 17, 1706-1715 108. Rauthan, M., Ranji, P., Abukar, R., and Pilon, M. (2015) A Mutation in Caenorhabditis elegans NDUF-7 Activates the Mitochondrial Stress Response and Prolongs Lifespan via ROS and CED-4. 5, 1639-1648 78 109. Pirkmajer, S., and Chibalin, A. V. (2011) Serum starvation: caveat emptor. American journal of physiology. Cell physiology 301, C272-279 110. Hailey, D. W., Rambold, A. S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P. K., and Lippincott-Schwartz, J. (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667 111. Gomes, L. C., Di Benedetto, G., and Scorrano, L. (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature cell biology 13, 589-598 112. Rambold, A. S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proceedings of the National Academy of Sciences 108, 10190-10195 113. Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D. E. (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α. Journal of Biological Chemistry 278, 15911-15916 114. Chavez, A., Miranda, L. F., Pichiule, P., and Chavez, J. C. (2008) Mitochondria and hypoxia-induced gene expression mediated by hypoxia-inducible factors. Annals of the New York Academy of Sciences 1147, 312-320 115. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker, P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences 95, 11715-11720 116. Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., Ho, C. C., Hsieh, Y. L., Lin, C. H., Huang, N. J., Naik, N. M., Kung, C. C., Lin, S. Y., Chen, R. H., Chang, K. S., Huang, T. H., and Shih, H. M. (2011) Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Molecular cell 42, 62-74 117. Tan, J.-A. T., Song, J., Chen, Y., and Durrin, L. K. (2010) Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1. Molecular and cellular biology 30, 2823-2836 118. Wu, H., Sun, L., Zhang, Y., Chen, Y., Shi, B., Li, R., Wang, Y., Liang, J., Fan, D., and Wu, G. (2006) Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. Journal of Biological Chemistry 281, 21848-21856 119. Zhang, J., Yuan, C., Wu, J., Elsayed, Z., and Fu, Z. (2015) Polo-like kinase 1-mediated phosphorylation of Forkhead box protein M1b antagonizes its SUMOylation and facilitates its mitotic function. The Journal of biological chemistry 290, 3708-3719 120. Zunino, R., Schauss, A., Rippstein, P., Andrade-Navarro, M., and McBride, H. M. (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. Journal of cell science 120, 1178-1188 121. Guo, C., Hildick, K. L., Luo, J., Dearden, L., Wilkinson, K. A., and Henley, J. M. (2013) SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death 79 following ischaemia. The EMBO journal 32, 1514-1528 122. Huang, C., Han, Y., Wang, Y., Sun, X., Yan, S., Yeh, E. T. H., Chen, Y., Cang, H., Li, H., and Shi, G. (2009) SENP3 is responsible for HIF1 transactivation under mild oxidative stress via p300 deSUMOylation. The EMBO journal 28, 2748-2762 123. Krumova, P., and Weishaupt, J. H. (2013) Sumoylation in neurodegenerative diseases. Cellular and molecular life sciences : CMLS 70, 2123-2138 124. Bettermann, K., Benesch, M., Weis, S., and Haybaeck, J. (2012) SUMOylation in carcinogenesis. Cancer letters 316, 113-125 125. Huang, C. J., Wu, D., Khan, F. A., and Huo, L. J. (2015) DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA and cell biology 34, 652-660 126. Fulda, S., Galluzzi, L., and Kroemer, G. (2010) Targeting mitochondria for cancer therapy. Nature reviews Drug discovery 9, 447-464 127. Guo, W.-h., Yuan, L.-h., Xiao, Z.-h., Liu, D., and Zhang, J.-x. (2011) Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma. Journal of cancer research and clinical oncology 137, 533-541 128. Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2008) Mitochondria in cancer cells: what is so special about them? Trends in cell biology 18, 165-173 |