|
1. Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 2011. 331(6024): p. 1559-64. 2. Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Crit Rev Oncog, 2013. 18(1-2): p. 43-73. 3. Bravo-Cordero, J.J., L. Hodgson, and J. Condeelis, Directed cell invasion and migration during metastasis. Curr Opin Cell Biol, 2012. 24(2): p. 277-83. 4. Rafelski, S.M. and J.A. Theriot, Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem, 2004. 73: p. 209-39. 5. Burnette, D.T., et al., A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol, 2011. 13(4): p. 371-81. 6. SA, K., et al., Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol., 2008. 10: p. 306-13. 7. M, A., The Crawling Movement of Metazoan Cells. Proc Roy Soc Lond B, 1980. 207: p. 129-147. 8. DiBerardino, M.A., Genetic stability and modulation of metazoan nuclei transplanted into eggs and oocytes. Differentiation, 1980. 17(1): p. 17-30. 9. Bretscher, M.S., On the shape of migrating cells--a 'front-to-back' model. J Cell Sci, 2008. 121(Pt 16): p. 2625-8. 10. Lim, H.C., H.A. Multhaupt, and J.R. Couchman, Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer, 2015. 14: p. 15. 11. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7). 12. Ciobanasu, C., B. Faivre, and C. Le Clainche, Actin dynamics associated with focal adhesions. Int J Cell Biol, 2012. 2012: p. 941292. 13. Fraley, S.I., et al., A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat Cell Biol, 2010. 12(6): p. 598-604. 14. Nagano, M., et al., Turnover of focal adhesions and cancer cell migration. Int J Cell Biol, 2012. 2012: p. 310616. 15. Ziegler, W.H., et al., Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans, 2008. 36(Pt 2): p. 235-9. 16. del Rio, A., et al., Stretching single talin rod molecules activates vinculin binding. Science, 2009. 323(5914): p. 638-41. 17. Yoshigi, M., et al., Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J Cell Biol, 2005. 171(2): p. 209-15. 18. Mitra, S.K., D.A. Hanson, and D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol, 2005. 6(1): p. 56-68. 19. Wozniak, M.A., et al., Focal adhesion regulation of cell behavior. Biochim Biophys Acta, 2004. 1692(2-3): p. 103-19. 20. Burridge, K., Foot in mouth: do focal adhesions disassemble by endocytosis? Nat Cell Biol, 2005. 7(6): p. 545-7. 21. Gleich, G.J. and D.A. Loegering, Immunobiology of eosinophils. Annu Rev Immunol, 1984. 2: p. 429-59. 22. Venge, P., et al., Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86. 23. Gleich, G.J. and C.R. Adolphson, The eosinophilic leukocyte: structure and function. Adv Immunol, 1986. 39: p. 177-253. 24. Dyer, K.D. and H.F. Rosenberg, The RNase a superfamily: generation of diversity and innate host defense. Mol Divers, 2006. 10(4): p. 585-97. 25. Fan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95. 26. McLaren, D.J., et al., Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol, 1981. 3(4): p. 359-73. 27. Hung, T.J., et al., Functional characterization of ECP-heparin interaction: a novel molecular model. PLoS One, 2013. 8(12): p. e82585. 28. Gleich, G.J., et al., Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A, 1986. 83(10): p. 3146-50. 29. Fang, S.L., et al., A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One, 2013. 8(3): p. e57318. 30. Fan, T.C., et al., Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem, 2008. 283(37): p. 25468-74. 31. Chen, C.J., et al., A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. Biomed Res Int, 2015. 2015: p. 237969. 32. Kwon, M.J., et al., Syndecans play dual roles as cell adhesion receptors and docking receptors. FEBS Lett, 2012. 586(16): p. 2207-11. 33. O'Connell, F.P., J.L. Pinkus, and G.S. Pinkus, CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol, 2004. 121(2): p. 254-63. 34. Szatmari, T. and K. Dobra, The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol, 2013. 3: p. 310. 35. Pasqualon, T., et al., A cytoplasmic C-terminal fragment of Syndecan-1 is generated by sequential proteolysis and antagonizes Syndecan-1 dependent lung tumor cell migration. Oncotarget, 2015. 6(31): p. 31295-312. 36. Szatmari, T., et al., Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. Dis Markers, 2015. 2015: p. 796052. 37. Tkachenko, E., J.M. Rhodes, and M. Simons, Syndecans: new kids on the signaling block. Circ Res, 2005. 96(5): p. 488-500. 38. Sulka, B., et al., Tyrosine dephosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment. J Biol Chem, 2009. 284(16): p. 10659-71. 39. Chakravarti, R., V. Sapountzi, and J.C. Adams, Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell, 2005. 16(8): p. 3678-91. 40. Multhaupt, H.A., et al., Syndecan signaling: when, where and why? J Physiol Pharmacol, 2009. 60 Suppl 4: p. 31-8. 41. Barbouri, D., et al., Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol, 2014. 4: p. 4. 42. Cheng, B., et al., Syndecans as Cell Surface Receptors in Cancer Biology. A Focus on their Interaction with PDZ Domain Proteins. Front Pharmacol, 2016. 7: p. 10. 43. Hassan, H., et al., Syndecan-1 modulates beta-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J, 2013. 280(10): p. 2216-27. 44. Altemeier, W.A., et al., Syndecan-1 controls cell migration by activating Rap1 to regulate focal adhesion disassembly. J Cell Sci, 2012. 125(Pt 21): p. 5188-95. 45. Ramani, V.C., et al., Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem, 2012. 287(13): p. 9952-61. 46. Stewart, M.D., V.C. Ramani, and R.D. Sanderson, Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem, 2015. 290(2): p. 941-9. 47. Bass, M.D., M.R. Morgan, and M.J. Humphries, Syndecans shed their reputation as inert molecules. Sci Signal, 2009. 2(64): p. pe18. 48. Purushothaman, A., et al., Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 2010. 115(12): p. 2449-57. 49. Maeda, T., J. Desouky, and A. Friedl, Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene, 2006. 25(9): p. 1408-12. 50. Ethell, I.M. and Y. Yamaguchi, Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J Cell Biol, 1999. 144(3): p. 575-86. 51. Klass, C.M., J.R. Couchman, and A. Woods, Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci, 2000. 113 ( Pt 3): p. 493-506. 52. Ethell, I.M., et al., EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron, 2001. 31(6): p. 1001-13. 53. Munesue, S., et al., The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J, 2002. 363(Pt 2): p. 201-9. 54. Granes, F., et al., Syndecan-2 induces filopodia by active cdc42Hs. Exp Cell Res, 1999. 248(2): p. 439-56. 55. Chen, L., C. Klass, and A. Woods, Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem, 2004. 279(16): p. 15715-8. 56. Beauvais, D.M. and A.C. Rapraeger, Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol, 2004. 2: p. 3. 57. Raulo, E., et al., Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem, 1994. 269(17): p. 12999-3004. 58. Hienola, A., et al., N-syndecan deficiency impairs neural migration in brain. J Cell Biol, 2006. 174(4): p. 569-80. 59. Bespalov, M.M., et al., Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol, 2011. 192(1): p. 153-69. 60. Kaksonen, M., et al., Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol Cell Neurosci, 2002. 21(1): p. 158-72. 61. Elfenbein, A. and M. Simons, Syndecan-4 signaling at a glance. J Cell Sci, 2013. 126(Pt 17): p. 3799-804. 62. Tumova, S., A. Woods, and J.R. Couchman, Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J Biol Chem, 2000. 275(13): p. 9410-7. 63. Greene, D.K., et al., Syndecan-4 associates with alpha-actinin. J Biol Chem, 2003. 278(9): p. 7617-23. 64. Denhez, F., et al., Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem, 2002. 277(14): p. 12270-4. 65. Gopal, S., et al., Heparan sulfate chain valency controls syndecan-4 function in cell adhesion. J Biol Chem, 2010. 285(19): p. 14247-58. 66. Elfenbein, A., et al., Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway. J Cell Biol, 2009. 186(1): p. 75-83. 67. Beauvais, D.M. and A.C. Rapraeger, Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp Cell Res, 2003. 286(2): p. 219-32. 68. Ibrahim, S.A., et al., Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer, 2012. 131(6): p. E884-96. 69. Ishikawa, T. and R.H. Kramer, Sdc1 negatively modulates carcinoma cell motility and invasion. Exp Cell Res, 2010. 316(6): p. 951-65. 70. Chaterji, S., et al., Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One, 2014. 9(2): p. e89824. 71. Palm, C., et al., Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochim Biophys Acta, 2007. 1768(7): p. 1769-76. 72. Young Kim, H., et al., Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci Rep, 2015. 5: p. 11719. 73. Polte, T., et al., Critical role for syndecan-4 in dendritic cell migration during development of allergic airway inflammation. Nat Commun, 2015. 6: p. 7554. 74. Toyoshima, E., et al., Expression of syndecan-1 is common in human lung cancers independent of expression of epidermal growth factor receptor. Lung Cancer, 2001. 31(2-3): p. 193-202. 75. Zitzmann, S., et al., Identification and evaluation of a new tumor cell-binding peptide, FROP-1. J Nucl Med, 2007. 48(6): p. 965-72. 76. Reits, E., et al., Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity, 2003. 18(1): p. 97-108. 77. O'Byrne, K.J., et al., A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer, 2002. 87(1): p. 15-20. 78. Sheng, J., et al., Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem, 2012. 287(25): p. 20996-1002. 79. Davis-Fleischer, K.M. and G.E. Besner, Structure and function of heparin-binding EGF-like growth factor (HB-EGF). Front Biosci, 1998. 3: p. d288-99. 80. Cook, P.W., et al., Differential effects of a heparin antagonist (hexadimethrine) or chlorate on amphiregulin, basic fibroblast growth factor, and heparin-binding EGF-like growth factor activity. J Cell Physiol, 1995. 163(2): p. 418-29. 81. Higashiyama, S., J.A. Abraham, and M. Klagsbrun, Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol, 1993. 122(4): p. 933-40. 82. Heidari-Hamedani, G., et al., Syndecan-1 alters heparan sulfate composition and signaling pathways in malignant mesothelioma. Cell Signal, 2015. 27(10): p. 2054-67. 83. Kreuger, J. and L. Kjellen, Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem, 2012. 60(12): p. 898-907. 84. Numa, F., et al., Elevated levels of syndecan-1 expression confer potent serum-dependent growth in human 293T cells. Cancer Res, 1995. 55(20): p. 4676-80. 85. Lim, Y., et al., PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol, 2008. 180(1): p. 187-203. 86. Schlaepfer, D.D., S.K. Mitra, and D. Ilic, Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta, 2004. 1692(2-3): p. 77-102. 87. Lim, Y., et al., Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem, 2004. 279(28): p. 29060-5. 88. Hayashi, I., K. Vuori, and R.C. Liddington, The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Biol, 2002. 9(2): p. 101-6. 89. Hu, Y.L., et al., FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep, 2014. 4: p. 6024. 90. Franco, S., B. Perrin, and A. Huttenlocher, Isoform specific function of calpain 2 in regulating membrane protrusion. Exp Cell Res, 2004. 299(1): p. 179-87. 91. Cortesio, C.L., et al., Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. J Biol Chem, 2011. 286(12): p. 9998-10006. 92. Maekawa, M., et al., Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 1999. 285(5429): p. 895-8. 93. Sumi, T., K. Matsumoto, and T. Nakamura, Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem, 2001. 276(1): p. 670-6. 94. Kawano, Y., et al., Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol, 1999. 147(5): p. 1023-38. 95. Raftopoulou, M. and A. Hall, Cell migration: Rho GTPases lead the way. Dev Biol, 2004. 265(1): p. 23-32. 96. Mitchison, T.J. and L.P. Cramer, Actin-based cell motility and cell locomotion. Cell, 1996. 84(3): p. 371-9. 97. Cox, E.A. and A. Huttenlocher, Regulation of integrin-mediated adhesion during cell migration. Microsc Res Tech, 1998. 43(5): p. 412-9. 98. Allen, W.E., et al., A role for Cdc42 in macrophage chemotaxis. J Cell Biol, 1998. 141(5): p. 1147-57. 99. Niggli, V., Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett, 1999. 445(1): p. 69-72. 100. Wicki, A. and V. Niggli, The Rho/Rho-kinase and the phosphatidylinositol 3-kinase pathways are essential for spontaneous locomotion of Walker 256 carcinosarcoma cells. Int J Cancer, 2001. 91(6): p. 763-71. 101. Ridley, A.J., Rho GTPases and cell migration. J Cell Sci, 2001. 114(Pt 15): p. 2713-22. 102. Bechara, C. and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett, 2013. 587(12): p. 1693-702. 103. Patel, L., et al., Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN. Curr Biol, 2001. 11(10): p. 764-8. 104. Vogel, B.E., et al., A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol, 1993. 121(2): p. 461-8. 105. Barras, D., et al., Inhibition of cell migration and invasion mediated by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene, 2014. 33(44): p. 5163-72. 106. Mishra, A., et al., Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci U S A, 2011. 108(41): p. 16883-8 |